精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x+x-a
=x(a∈R)在[-1,1]上有解,则a的取值范围是(  )
A、[1,2]
B、[-
1
2
,1
]
C、[1,3]
D、[-
1
2
,3
]
考点:导数的运算
专题:计算题,导数的概念及应用
分析:
2x+x-a
=x(a∈R)在[-1,1]有解,可得2x=x2-x+a在[0,1]有解,分类讨论即可a的取值范围.
解答: 解:∵
2x+x-a
=x(a∈R)在[-1,1]有解,
∴2x=x2-x+a在[0,1]有解,
a<1,则2<1-1+a,∴a>2,不成立;
a≥1,则2≥1-1+a,∴1≤a≤2,
故选:A.
点评:本题考查方程在区间上有解,求a的取值范围,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
k-2x
1+k•2x
在定义域上为奇函数,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-2|,0<m<n,且f(m)=f(n),则m+n的取值范围是(  )
A、(0,2)
B、(2
2
,4)
C、(
2
,2)
D、(2,2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C所对的边,若acos2
C
2
+ccos2
A
2
=
3b
2
,求证:a+c=2b.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(x,y)是直线
x
3
+
y
4
=1上的点,则xy的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
kx+2,x≤0
lnx,x>0
(k∈R).若函数y=|f(x)|+k有三个零点,则实数k的取值范围是(  )
A、k≤-2
B、-2≤k<-1
C、-1<k<0
D、k≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在定义域(-7,7)上单调递减,且满足条件f(1-a)+f(2a-5)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,其前n项和为Sn,已知a1+a4=-
7
16
,且有S1,S3,S2成等差;
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=n(n∈N+),记Tn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=
9-x2
的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数P的取值范围.

查看答案和解析>>

同步练习册答案