【题目】已知, ,其中是自然常数, .
(1)当时,求的极值,并证明恒成立;
(2)是否存在实数,使的最小值为 ?若存在,求出的值;若不存在,请说明理由.
【答案】(1)详见解析;(2) .
【解析】试题分析:(1)求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间,求出f(x)的极小值,令,求出h(x)的最大值,从而证出结论即可;(2)求出函数f(x)的导数,通过讨论a的范围,求出函数f(x)的最小值,求出a的值即可.
试题解析:
(1)证明:∵, .∴当时, ,此时单调递减;当时, ,此时单调递增.∴的极小值为.即在上的最小值为 .令, ,当时, , 在上单调递增,∴,∴恒成立.
(2)假设存在实数,使有最小值 , .
①当时, 在上单调递减, , (舍去),∴时,不存在使的最小值为3.
②当时, 在上单调递减,在上单调递增,∴, ,满足条件.
③当时, 在上单调递减, ,(舍去),∴时,不存在使的最小值为 .
综上,存在实数,使得当时, 有最小值 .
科目:高中数学 来源: 题型:
【题目】已知点,关于原点对称,恰为抛物线: 的焦点,点在抛物线上,且线段的中点恰在轴上,的面积为8.若抛物线上存在点使得,则实数的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中, 是的中点, ,其周长为,若点在线段上,且.
(1)建立合适的平面直角坐标系,求点的轨迹的方程;
(2)若是射线上不同两点, ,过点的直线与交于,直线与交于另一点.证明: 是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.
(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?
(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有一名男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=3|x+2|﹣|x﹣4|.
(1)求不等式f(x)>2的解集;
(2)设m,n,k为正实数,且m+n+k=f(0),求证:mn+mk+nk≤ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com