精英家教网 > 高中数学 > 题目详情

【题目】2019年底,武汉发生新型冠状病毒肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为最美逆行者.武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者疑似的新冠肺炎患者无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等四类人员,强化网格化管理,不落一户不漏一人.若在排查期间,某小区有5人被确认为确诊患者的密切接触者,现医护人员要对这5人随机进行逐一核糖核酸检测,只要出现一例阳性,则将该小区确定为感染高危小区.假设每人被确诊的概率均为且相互独立,若当时,至少检测了4人该小区被确定为感染高危小区的概率取得最大值,则____

【答案】

【解析】

根据题意求出检测前3人没有确诊第4人确诊或者前4人没有确诊第5人确诊的概率,利用导数法,求出所求概率的最大值.

由题意知,至少检测了4人该小区被确定为感染高危小区的概率

,解得,故上单调递增,

上单调递减,故当时,取得最大值.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线y24x焦点F的直线l交抛物线于AB两点(点A在第一象限),若3,则直线l的斜率为(

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,一场新冠肺炎疫情突如其来,在党中央强有力的领导下,全国各地的医务工作者迅速驰援湖北,以大无畏的精神冲在了抗击疫情的第一线,迅速控制住疫情.但国外疫情严峻,输入性病例逐渐增多,为了巩固我国的抗疫成果,保护国家和人民群众的生命安全,我国三家生物高科技公司各自组成ABC三个科研团队进行加急疫苗研究,其研究方向分别是灭活疫苗、核酸疫苗和全病毒疫苗,根据这三家的科技实力和组成的团队成员,专家预测这ABC三个团队未来六个月中研究出合格疫苗并用于临床接种的概率分别为,且三个团队是否研究出合格疫苗相互独立.

1)求六个月后AB两个团队恰有一个研究出合格疫苗并用于临床接种的概率;

2)设六个月后研究出合格疫苗并用于临床接种的团队个数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为4.且过点

1)求椭圆E的方程;

2)设,过B点且斜率为的直线l交椭圆E于另一点M,交x轴于点Q,直线AM与直线相交于点P.证明:O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l和椭圆相交于点

1)当直线l过椭圆的左焦点和上顶点时,求直线l的方程

2)点上,若,求面积的最大值:

3)如果原点O到直线l的距离是,证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,,点中点.

1)求证:平面平面

2)若点中点,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右焦点分别为轴的正半轴上一点,交椭圆于,且的内切圆半径为1.

1)求椭圆的标准方程;

2)若直线和圆相切,且与椭圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

同步练习册答案