精英家教网 > 高中数学 > 题目详情
16.数列{an}的通项公式an=ncos$\frac{nπ}{2}$,其前n项和为Sn,则S2016等于(  )
A.2016B.1008C.504D.0

分析 an=ncos$\frac{nπ}{2}$,可得a2k-1=$(2k-1)cos\frac{(2k-1)π}{2}$=0,k∈N*,a2k=2kcoskπ=2k(-1)k.即可得出S2016=a2+a4+…+a2016

解答 解:∵an=ncos$\frac{nπ}{2}$,
∴a2k-1=$(2k-1)cos\frac{(2k-1)π}{2}$=0,k∈N*
a2k=2kcoskπ=2k(-1)k
则S2016=a2+a4+…+a2016
=2[(2-1)+(4-3)+…+(1013-1012)]
=1008,
故选:B.

点评 本题考查了三角函数的周期性、数列求和,考查了分类讨论、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.计算:tan1°•tan2°•tan3°•tan4°•tan5°•…•tan87°•tan88°•tan89°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l的倾斜角为135°,且过点(1,1),则这条直线被坐标轴所截得的线段长是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设P(x0,y0)是圆O:x2+y2=$\frac{2}{3}$外的动点,过P的直线与圆O相切,切点为A,B,设切线PA,PB的斜率分别为k1,k2,且满足k1k2=-$\frac{1}{2}$.
(1)求点P的轨迹方程C;
(2)若动直线l1,l2均与C相切,且l1∥l2,试探究在x轴上是否存在定点Q,点Q到l1,l2的距离之积恒为1?若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P在椭圆C上,求P到直线x-2y+3$\sqrt{2}$=0的距离的最大值和最小值,并求出取最大值或最小值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若动点P在直线l:x=-2$\sqrt{2}$上,过P作直线交椭圆$\frac{x^2}{12}+\frac{y^2}{4}$=1于M,N两点,使得|PM|=|PN|,再过P作直线l′⊥MN,则l′恒过定点Q,点Q的坐标为(-$\frac{4\sqrt{2}}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.2012年初,甲?乙两外商在湖北各自兴办了一家大型独资企业.2015年初在经济指标对比时发现,这两家企业在2012年和2014年缴纳的地税均相同,其间每年缴纳的地税按各自的规律增长;企业甲年增长数相同,而企业乙年增长率相同.则2015年企业缴纳地税的情况是(  )
A.甲多B.乙多C.甲乙一样多D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b是异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a,b所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=5.

查看答案和解析>>

同步练习册答案