精英家教网 > 高中数学 > 题目详情

【题目】以下四个关于圆锥曲线的命题中:

①双曲线与椭圆有相同的焦点;

②在平面内,设为两个定点,为动点,且,其中常数为正实数,则动点的轨迹为椭圆;

③方程的两根可以分别作为椭圆和双曲线的离心率;

④过双曲线的右焦点作直线交双曲线于两点,若,则这样的直线有且仅有3条.其中真命题的序号为__________

【答案】①④

【解析】①正确,②不正确,因为当时表示椭圆,当时表示线段,当时,无轨迹;③不正确,因为方程的两个根式分别是,1不能表示椭圆和双曲线的离心率,能表示椭圆的离心率;④正确,因为如果都是右支上的点,最短的弦长是垂直于轴的线段,长度为,所以只有一条,如果两点各是左右支的一个点,最短的弦长是顶点间的距离,即 ,所以有两条曲线,这样一共是3条,故正确的命题的序号是①④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱柱ABCD﹣A1B1C1D1的底面是边长为2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,设E为CD中点

(1)求证:D1E⊥平面BEC1
(2)点F在线段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:第二象限角比第一象限角大;是第二象限角,则三角形的内角是第一象限角或第二象限角;函数是最小正周期为的周期函数;△ABC中,若,A>B.其中正确的是___________ (写出所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用另一种形式表示下列集合:

(1){绝对值不大于3的整数};

(2){所有被3整除的数};

(3){x|x=|x|,x∈Zx<5};

(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(Ⅰ)当时,解不等式

(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;

(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点 分别在棱 上,水面恰好过点 ,且

(1)证明:

(2)若底面水平放置时,求水面的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点.

)求双曲线的方程.

)证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移个单位长度得到.

查看答案和解析>>

同步练习册答案