精英家教网 > 高中数学 > 题目详情
(2011•深圳二模)甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若s,s,s分别表示他们测试成绩的标准差,则(  )
分析:先分布求出甲,乙,丙三名运动员射击成绩的平均分,然后根据方差公式求出相应的方差,比较大小可得标准差的大小.
解答:解:甲的平均成绩为(7+8+9+10)×0.25=8.5,其方差为s2=0.25×[(7-8.5)2+(8-8.5)2+(9-8.5)2+(10-8.5)2]=1.25
乙的平均成绩为7×0.3+8×0.2+9×0.2+10×0.3=8.5,其方差为s2=0.3×(7-8.5)2+0.2×(8-8.5)2+0.2×(9-8.5)2+0.3×(10-8.5)2=1.45
丙的平均成绩为7×0.2+8×0.3+9×0.3+10×0.2=8.5,其方差为s2=0.2×(7-8.5)2+0.3×(8-8.5)2+0.3×(9-8.5)2+0.2×(10-8.5)2=1.05
∴s2<s2<s2
∴s<s<s
故选D.
点评:本题主要考查了频率分布条形图,以及平均数、方差和标准差,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•深圳二模)设A={(a,c)|0<a<2,0<c<2,a,c∈R},则任取(a,c)∈A,关于x的方程ax2+2x+c=0有实根的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•深圳二模)已知双曲线
x2
a2
-
y2
b2
=1
的一条渐近线方程为y=
3
4
x
,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•深圳二模)设函数f(x)=sinωx+sin(ωx-
π
2
)
,x∈R.
(1)若ω=
1
2
,求f(x)的最大值及相应的x的集合;
(2)若x=
π
8
是f(x)的一个零点,且0<ω<10,求ω的值和f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•深圳二模)已知
a
b
是非零向量,则
a
b
不共线是|
a
+
b
|<|
a
|+|
b
|的(  )

查看答案和解析>>

同步练习册答案