如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.
(1) 求证:平面平面;
(2) 求二面角的大小.
(1)详见解析;(2).
解析试题分析:(1) 利用直角三角形,先证明折前有,折后这个垂直关系没有改变,然后由平面平面的性质证明平面,最后由面面垂直的判定定理即可证明平面平面;(2)为方便计算,不妨设,先以为原点,以方向为轴,以方向为轴,以与平面向上的法向量同方向为轴,建立空间直角坐标系,写给相应点的坐标,然后分别求出平面和平面的一个法向量,接着计算出这两个法向量夹角的余弦值,根据二面角的图形与计算出的余弦值,确定二面角的大小即可.
试题解析:(1) 证明:由题可知:折前
,这个垂直关系,折后没有改变
故折后有
(2)不妨设,以为原点,以方向为轴,以方向为轴,以与平面向上的法向量同方向为轴,建立空间直角坐标系 7分
则
设平面和平面的法向量分别为,
由及可得到即,不妨取
又由及可得到即
不妨取 9分
11分
综上所述,二面角大小为 12分.
考点:1.线线垂直的证明;2. 线面垂直、面面垂直的判定与性质;3.空间向量在解决空间角中的运用问题.
科目:高中数学 来源: 题型:解答题
如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,
求证:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在正三棱柱ABC—A1B1C1中,.
(1)求直线与平面所成角的正弦值;
(2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面底面,且△PAD为等腰直角三角形,,E、F分别为PC、BD的中点.
(1)求证:EF//平面PAD;
(2)求证:平面平面 .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com