【题目】已知函数.
(1)令,若在区间上不单调,求的取值范围;
(2)当时,函数的图象与轴交于两点,,且,又是的导函数.若正常数,满足条件,.试比较与0的关系,并给出理由
【答案】(1)(2)见解析.
【解析】
(1)先求得,因为g(x)在区间(0,3)上不单调,所以g'(x)=0在(0,3)上有实数解,且无重根.由g'(x)=0,求得,由此可得a的范围.(2)由题意可得,f(x)﹣mx=0有两个实根x1,x2,化简可得.可得h′(α+β),由条件知(2α﹣1)()≤0,利用分析法结合构造函数证明h′(α+β)
(1)因为,所以,
因为在区间上不单调,所以在上有实数解,且无重根,
由,有,,令t=x+1>4
则y=2(t+在t>4单调递增,故
(2)∵,又有两个实根,,
∴,两式相减,得,
∴,
于是
.
∵,∴,∴.
要证:,只需证:
只需证:.(*)
令,∴(*)化为,只需证
∵在上单调递增,,∴,即.
∴.
科目:高中数学 来源: 题型:
【题目】空气质量指数是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区某月1日至24日连续24天的空气质量指数,根据得到的数据绘制出如图所示的折线图,则下列说法错误的是( )
A. 该地区在该月2日空气质量最好
B. 该地区在该月24日空气质量最差
C. 该地区从该月7日到12日持续增大
D. 该地区的空气质量指数与这段日期成负相关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为(,为参数)
(1)求曲线的直角坐标方程;
(2)设直线与曲线交于、两点,点的直角坐标为,若,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知直线2x﹣y﹣1=0与直线x﹣2y+1=0交于点P.
(Ⅰ)求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)
(Ⅱ)求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:
①在函数的图象中,相邻两个对称中心的距离为;
②函数的图象关于点对称;
③“且”是“”的必要不充分条件;
④在中,若,则角等于或.
其中是真命题的序号为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢尔宾斯基三角形(Sierpinski triangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.在一个正三角形中,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的部分,黑色三角形为剩下的部分,我们称此三角形为谢尔宾斯基三角形.若在图(3)内随机取一点,则此点取自谢尔宾斯基三角形的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com