精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥中,底面是边长为的正方形,是正三角形,为线段的中点,点为底面内的动点,则下列结论正确的是( )

A.时,平面平面

B.时,直线与平面所成的角的正弦值为

C.若直线异面时,点不可能为底面的中心

D.若平面平面,且点为底面的中心时,

【答案】AC

【解析】

推导出平面,结合面面垂直的判定定理可判断A选项的正误;设的中点为,连接,证明出平面,找出直线与平面所成的角,并计算出该角的正弦值,可判断B选项的正误;利用反证法可判断C选项的正误;计算出线段的长度,可判断D选项的正误.综合可得出结论.

因为,所以平面

平面,所以平面平面A项正确;

的中点为,连接,则.

平面平面,平面平面平面.

平面,设平面所成的角为,则

,则B项错误;

连接,易知平面,由确定的面即为平面

当直线异面时,若点为底面的中心,则

平面,则共面,矛盾,C项正确;

连接平面平面

分别为的中点,则

,故,则D项错误.

故选:AC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,是棱上动点,下列说法正确的是( .

A.对任意动点,在平面内存在与平面平行的直线

B.对任意动点,在平面内存在与平面垂直的直线

C.当点运动到的过程中,与平面所成的角变大

D.当点运动到的过程中,点到平面的距离逐渐变小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)已知等差数列的前项和为a2=4S5=35

)求数列的前项和

)若数列满足,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019COVID19),简称“新冠肺炎”.下图是2020115日至124日累计确诊人数随时间变化的散点图.

为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据115日至124日的数据(时间变量t的值依次12,…,10)建立模型.

1)根据散点图判断,哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)

2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;

3)以下是125日至129日累计确诊人数的真实数据,根据(2)的结果回答下列问题:

时间

125

126

127

128

129

累计确诊人数的真实数据

1975

2744

4515

5974

7111

(ⅰ)当125日至127日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?

(ⅱ)2020124日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?

附:对于一组数据(,……,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:其中.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,如图,分别是正方形的中心.则下列结论正确的是(

A.平面的交点是的中点

B.平面的交点是的三点分点

C.平面的交点是的三等分点

D.平面将正方体分成两部分的体积比为11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点EF处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点EF处的目标球,最后停在点C处,若AE=50cmEF=40cmFC=30cm,∠AEF=CFE=60°,则该正方形的边长为(

A.50cmB.40cmC.50cmD.20cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0b0,则“12”a2+a3b2+2b的(

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案