精英家教网 > 高中数学 > 题目详情
16.过双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆O:x2+y2=a2的两条切线,记切点分别为A,B,双曲线的一条渐近线与圆O在第一象限的交点为C,若∠ACB=60°,则双曲线的渐近线方程为y=±$\sqrt{3}$x.

分析 根据题意∠AC′B=60°,OA=OC′,可以得到∠AFO=30°,从而得到a与c的关系式,再由a,b,c的关系,进而可求双曲线的渐近线方程.

解答 解:由题意,∠AC′B=60°,OA=OC′,
则∠AOC′=60°,
∵FA是圆的切线,∴∠AFO=30°,
∴OF=2OC′,∴c=2a,b=$\sqrt{3}$a,
即有双曲线的渐近线方程为y=±$\sqrt{3}$x,
故答案为:y=±$\sqrt{3}$x.

点评 本题考查双曲线的渐近线方程,解题的关键是熟练掌握双曲线与圆的位置关系,结合有关条件确定a、b与c的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.sin$\frac{4}{3}$π•cos$\frac{6}{5}π$•tan(-$\frac{4}{3}π$)=-$\frac{3}{2}$cos$\frac{π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.己知圆C:(x-2)2+(y-4)2=1.P(x,y)为圆C上一点,则x2+y2的取值范围是[21-4$\sqrt{5}$,21+4$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数定义域:
(1)y=$\sqrt{1-2sin(x+\frac{π}{4})}$;
(2)y=lg($\sqrt{3}$-tanx).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x3+x6的展开式可以写成a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a2=45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.空间四边形ABCD的各边及对角线均相等,E是边BC的中点,那么(  )
A.$\overrightarrow{AE}•\overrightarrow{BC}$<$\overrightarrow{AE}•\overrightarrow{CD}$B.$\overrightarrow{AE}•\overrightarrow{BC}$=$\overrightarrow{AE}•\overrightarrow{CD}$
C.$\overrightarrow{AE}•\overrightarrow{BC}$>$\overrightarrow{AE}•\overrightarrow{CD}$D.$\overrightarrow{AE}•\overrightarrow{BC}$与$\overrightarrow{AE}•\overrightarrow{CD}$不能比较大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=2$\sqrt{x}$sin$\frac{x}{2}$cos$\frac{x}{2}$的导数是$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过椭圆$\frac{x^2}{2}+{y^2}=1$的右焦点的直线交椭圆于A,B两点,则弦AB的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{x-2}+\frac{1}{{ln({3-x})}}$的定义域为(  )
A.[2,3)B.(2,3)C.[2,+∞)D.(-∞,3]

查看答案和解析>>

同步练习册答案