精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=($\frac{1}{3}$)x-log2x,0<a<b<c,f(a)f(b)f(c)<0,实数d是函数f(x)的一个零点.给出下列四个判断:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是①②③(填序号)

分析 本题可从函数的单调性入手,观察函数解析式,此函数是一个减函数,再根据f(a)f(b)f(c)<0对三个函数值的符号的可能情况进行判断,得出结论.

解答 因为f(x)=( $\frac{1}{3}$)x-log2x,在定义域上是减函数,
∴0<a<b<c时,f(a)>f(b)>f(c)
又因为f(a)f(b)f(c)<0,
所以一种情况是f(a),f(b),f(c)都为负值,①,
另一种情况是f(a)>0,f(b)>0,f(c)<0.②
对于①要求a,b,c都大于d,
对于②要求a,b都小于d是,c大于d.
两种情况综合可得d>c不可能成立
故答案为:①②③.

点评 对数函数的单调性与特殊点;指数函数的单调性与特殊点;不等式比较大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若点P(m,m+1)在圆C上,求直线PQ的斜率;
(2)若M是圆C上任一点,求|MQ|的最大值和最小值;
(3)若点N(a,b)满足关系式a2+b2-4a-14b+45=0,求$\frac{b-3}{a+3}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.关于x的不等式$\frac{3}{x}$>1(x∈Z)的解集为A,关于x的方程x2-mx+2=0(m∈R)的解集为B.
(1)求集合A;
(2)若 B∩A=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A(2,-2,1),B(1,0,1),C(3,-1,4),则向量$\overrightarrow{AB}与\overrightarrow{AC}$夹角的余弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{55}}{55}$C.$\frac{\sqrt{11}}{11}$D.$\frac{\sqrt{55}}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C的圆心坐标为(2,0),且圆C与直线x-$\sqrt{3}$y+2=0相切,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,已知a1>0,前n项和为Sn,且有S3=S11,则$\frac{a_1}{d}$=$-\frac{13}{2}$,当Sn取得最大值时,n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.求函数f(x)=x3-4x2+5x-4在x=2处的切线方程为x-y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$f(x)=\left\{{\begin{array}{l}{-x(-1<x<0)}\\{{x^2}(0≤x<1)}\\{x(1≤x≤2)}\end{array}}\right.$,求$f(\frac{1}{2})$=(  )
A.$\frac{1}{4}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\sqrt{3}$sinx+acosx的图象的一条对称轴为x=$\frac{π}{3}$.则函数f(x)的单调递增区间为(  )
A.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)B.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z)

查看答案和解析>>

同步练习册答案