精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

1)求证:直线平面

2)求与平面所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)取的中点,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得直线平面

2)连接,推导出,然后以点为坐标原点,所在直线分别为轴建立空间直角坐标系,利用空间向量法可求得直线与平面所成角的正弦值.

1)取的中点为,连接

分别为的中点,

四边形是菱形,的中点,

四边形为平行四边形,

直线平面

2)连接

四边形是菱形,是等边三角形,

的中点,

,以为坐标原点,所在直线分别为轴建立空间直角坐标系

设平面的一个法向量为

,即,令,得

与平面所成角为,则,

因此,平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程与直线的普通方程;

(2)直线与曲线交于两点,记弦的中点为,点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响.对近年的年宣传费 和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中 .附:对于一组数据 ,其回归直线 的斜率和截距的最小二乘法估计分别为 .

1)根据散点图判断, 在哪一个适宜作为年销售量 关于年宣传费 的回归方程类型?(给出判断即可,不必说明理由)

2)根据1小问的判断结果及表中数据,建立 关于 的回归方程;

3)已知这种产品的年利润 的关系为 .根据2小问的结果回答下列问题:

2年宣传费 时,年销售量及年利润的预报值是多少?

3年宣传费为何值时,年利润的预报值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三家企业产品的成本分别为100001200015000,其成本构成如下图所示,则关于这三家企业下列说法错误的是(

A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业

C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在12个集合和4098个集合满足下列三个条件:(1);(2)当时,;(3)当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等边的边长为3,点分别为上的点,且满足(如图1),将沿折起到的位置,使二面角成直二面角,连接 (如图2

1)求证: 平面

2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断极值点的个数;

2)若x>0时,恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,随着新型冠状病毒肺炎疫情在全国扩散,各省均启动重大突发公共卫生事件一级响应,采取了一系列有效的防控措施.如测量体温、有效隔离等.

1)现从深圳市某社区的体温登记表中随机采集100个样本.据分析,人群体温近似服从正态分布.表示所采集100个样本的数值在之外的的个数,求X的数学期望.

2)疫情期间,武汉大学中南医院重症监护室(ICU)主任彭志勇团队对138例确诊患者进行跟踪记录.为了分析并发症(complications)与重症患者(ICU)有关的可信程度,现从该团队发表在国际顶级医学期刊JAMA《美国医学会杂志》研究论文中获得相关数据.请将下列2×2列联表补充完整,并判断能否在犯错误的概率不超过0.1%的前提下认为重症患者与并发症有关

附:若,则.

参考公式与临界值表:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,

(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;

(2)在(1)的条件下,记为选出的2位老师中女老师的人数,写出的分布列.

查看答案和解析>>

同步练习册答案