精英家教网 > 高中数学 > 题目详情
12.若α,β是一直角三角形两锐角的弧度数,则$\frac{4}{α}$+$\frac{1}{β}$的最小值为(  )
A.9B.18C.$\frac{9}{π}$D.$\frac{18}{π}$

分析 α,β是一直角三角形两锐角的弧度数,可得α+β=$\frac{π}{2}$,α,β>0.再利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵α,β是一直角三角形两锐角的弧度数,
∴α+β=$\frac{π}{2}$,α,β>0.
则$\frac{4}{α}$+$\frac{1}{β}$=$\frac{2}{π}$(α+β)$(\frac{4}{α}+\frac{1}{β})$=$\frac{2}{π}(5+\frac{4β}{α}+\frac{α}{β})$≥$\frac{2}{π}(5+2\sqrt{\frac{4β}{α}•\frac{α}{β}})$=$\frac{18}{π}$,当且仅当α=2β=$\frac{π}{3}$时取等号.
∴$\frac{4}{α}$+$\frac{1}{β}$的最小值为$\frac{18}{π}$.
故选:D.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知A={2,4,a3-2a2-a+7},B={1,a+3,a2-2a+2,a3+a2+3a+7},且A∩B={2,5}.求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0},若U=R,A⊆(∁UB),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若sin2α=$\frac{24}{25}$,则$\sqrt{2}$cos($\frac{π}{4}$-α)的值为±$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A、B、C的对边分别为a、b、c,且2sin2(B+C)=$\sqrt{3}$sin 2A.
(1)求A的大小;
(2)若a=7,b=5,求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知:ax+by=3,ax2+by2=7,ax3+by3=16,ax4+by4=42,则ax5+by5=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知实数a,b满足0<a<b+1,试判断a2-1与b2+2b的大小.
(2)已知实数x,y,试判断x2+xy+y2的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.命题p:有些三角形是等腰三角形,则¬p是所有三角形不是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设A={x|x2-x-2≥0},B={x|$\frac{x+2}{4-x}$≥0},C={x|x2-5x+4<0},求A∩B,A∪C,(∁RB)∩C,(∁RA)∪(∁RC).

查看答案和解析>>

同步练习册答案