精英家教网 > 高中数学 > 题目详情
(2013•安徽)设函数fn(x)=-1+x+
x2
22
+
x3
32
++
xn
n2
(x∈R,n∈N+
),证明:
(1)对每个n∈N+,存在唯一的xn∈[
2
3
,1]
,满足fn(xn)=0;
(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p
1
n
分析:(1)由题意可得f′(x)>0,函数f(x)在(0,+∞)上是增函数.求得fn(1)>0,fn
2
3
)<0,再根据函数的零点的判定定理,可得要证的结论成立.
(2)由题意可得fn+1(xn)>fn(xn)=fn+1(xn+1)=0,由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,故xn-xn+p>0.用 fn(x)的解析式减去fn+p (xn+p)的
解析式,变形可得xn-xn+p=
n
k=2
xn+pk-xnk
k2
+
n+p
k=n+1
xn+pk
k2
,再进行放大,并裂项求和,可得它小于
1
n
,综上可得要证的结论成立.
解答:证明:(1)对每个n∈N+,当x>0时,由函数fn(x)=-1+x+
x2
22
+
x3
32
++
xn
n2
(x∈R,n∈N+
),可得
f′(x)=1+
x
2
+
x2
3
+…
xn-1
n
>0,故函数f(x)在(0,+∞)上是增函数.
由于f1(x1)=0,当n≥2时,fn(1)=
1
22
+
1
32
+…+
1
n2
>0,即fn(1)>0.
又fn
2
3
)=-1+
2
3
+[
(
2
3
)
2
22
+
(
2
3
)
3
32
+
(
2
3
)
4
42
+…+
(
2
3
)
n
n2
]≤-
1
3
+
1
4
n
i=2
(
2
3
)
i
=-
1
3
+
1
4
×
(
2
3
)
2
[1-(
2
3
)
n-1
]
1-
2
3

=-
1
3
(
2
3
)
n-1
<0,
根据函数的零点的判定定理,可得存在唯一的xn∈[
2
3
,1]
,满足fn(xn)=0.
(2)对于任意p∈N+,由(1)中xn构成数列{xn},当x>0时,∵fn+1(x)=fn(x)+
xn+1
(n+1)2
>fn(x),
∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0.
由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,即 xn-xn+1>0,故数列{xn}为减数列,即对任意的 n、p∈N+,xn-xn+p>0.
由于 fn(x)=-1+xn+
xn2
22
+
xn3
32
+…+
xnn
n2
=0 ①,
fn+p (xn+p)=-1+xn+p+
xn+p2
22
+
xn+p3
32
+…+
xn+pn
n2
+[
xn+pn+1
(n+1)2
+
xn+pn+2
(n+2)2
+…+
xn+pn+p
(n+p)2
]②,
用①减去②并移项,利用 0<xn+p≤1,可得
xn-xn+p=
n
k=2
xn+pk-xnk
k2
+
n+p
k=n+1
xn+pk
k2
n+p
k=n+1
xn+pk
k2
n+p
k=n+1
1
k2
n+p
k=n+1
1
k(k-1)
=
1
n
-
1
n+p
1
n

综上可得,对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p
1
n
点评:本题主要考查函数的导数及应用,函数的零点的判定,等比数列求和以及用放缩法证明不等式,还考查推理以及运算求解能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设i是虚数单位,若复数a-
10
3-i
(a∈R)是纯虚数,则a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设sn为等差数列{an}的前n项和,s8=4a3,a7=-2,则a9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=sinx+sin(x+
π3
).
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)不画图,说明函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′(
π
2
)=0
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2(an+
1
2an
)求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案