【题目】设偶函数f(x)的定义域为[﹣4,0)∪(0,4],若当x∈(0,4]时,f(x)=log2x,
(1)求出函数在定义域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.
【答案】
(1)解:由题意知:f(x)是偶函数,即f(﹣x)=f(x),
当x∈(0,4]时,f(x)=log2x,
那么:当x∈[﹣4,0)时,则﹣x∈(0,4],
可得:f(﹣x)=log2﹣x,
∵f(﹣x)=f(x),
∴f(x)=log2﹣x,
故得f(x)的函数解析式为:
(2)解:当0<x≤4时,f(x)=log2x,
∵0<x<1时,f(x)<0,
不等式xf(x)<0恒成立.
当﹣4≤x<0时,f(x)=log2﹣x,
∵﹣4≤x<﹣1时,f(x)>0,
不等式xf(x)<0恒成立.
综上所述:不等式的解集为(﹣4,﹣1)∪(0,1)
【解析】(1)根据f(x)是偶函数,f(﹣x)=f(x),当x∈(0,4]时,f(x)=log2x,可求x∈[﹣4,0)的解析式.(2)根据定义域的不同,解析式不同,分类解不等式即可.
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosx,sinx), =( sinx,sinx),x∈R设函数f(x)= ﹣
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲制作容积为16米3 , 高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,A,B的坐标分别是 ,点G是△ABC的重心,y轴上一点M满足GM∥AB,且|MC|=|MB|. (Ⅰ)求△ABC的顶点C的轨迹E的方程;
(Ⅱ)直线l:y=kx+m与轨迹E相交于P,Q两点,若在轨迹E上存在点R,使四边形OPRQ为平行四边形(其中O为坐标原点),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是( )
A.至少有一个黒球与都是黒球
B.至少有一个黑球与都是红球
C.至少有一个黒球与至少有个红球
D.恰有个黒球与恰有个黒球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求实数a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com