精英家教网 > 高中数学 > 题目详情
已知a、b、c成等差数列,则函数y=2ax2+3bx+c与x轴交点的个数是
 
考点:等差数列的通项公式,二次函数的性质
专题:等差数列与等比数列
分析:易得2b=a+c,代入变形可判△≥0,可得结论.
解答: 解:∵a、b、c成等差数列,∴2b=a+c,
∴△=(3b)2-4×2a×c=9b2-8ac
=9×(
a+c
2
)2
-8ac=
1
4
(9a2+9c2+18ac-32ac)
=
1
4
(9a2+9c2-14ac)=
9
4
[(a-
7
9
c
2+
32
81
c2]≥0,
∴函数y=2ax2+3bx+c与x轴交点的个数为:1或2
故答案为:1或2
点评:本题考查等差数列,涉及一元二次方程根的个数,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆锥曲线Γ的两个焦点分别为F1,F2.若曲线Γ上存在点P满足|PF1|:|F1F2|:|PF2|=5:4:2,则曲线Γ的离心率等于(  )
A、
4
3
1
2
B、
4
3
3
4
C、2或
4
7
D、
4
3
4
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
16
+
y2
12
=1内一点A(1,-1),F为椭圆的右焦点,在椭圆上有一点P,求|PA|+2|PF|的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆台的体积是
26
3
3
πcm3,侧面展开图是半圆环,半圆环的大半径是小半径的3倍,求这个圆台小底面的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过点P(-2,3),且满足下列条件的直线方程:
(1)在x轴,y轴上的截距之和等于6;
(2)在x轴,y轴上的截距之和分别为a,b,且b=2a.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校学生参加了“铅球”和“立定跳远”两个科目的体能测试,每个科目的成绩分为A,B,C,D.E五个等级,该校某班学生两科目测试成绩的数据统计如图所示,其中“铅球”科目盼成绩为E的学生有8人.

(I)求该班学生中“立定跳远”科目中成绩为A的人数;
(Ⅱ)已知该班学生中恰有2人的两科成绩等级均为A,在至少一科成绩等级为A的学生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin4x+2
3
sinxcosx-cos4x的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(
2
,3π),化简
1-sinα
+
1+sinα
=(  )
A、-2cos
α
2
B、2cos
α
2
C、-2sin
α
2
D、2sin
α
2

查看答案和解析>>

科目:高中数学 来源: 题型:

OP1
=
a
OP2
=
b
P1P
PP2
(λ≠-1)
,则
OP
=(  )
A、
a
b
B、λ
a
+(1-λ)
b
C、λ
a
+
b
D、
1
1+λ
a
+
λ
1+λ
b

查看答案和解析>>

同步练习册答案