分析 (1)由a=1得f(x)的解析式,求导,令f′(x)>0,令f′(x)<0分别得出x的取值范围,即f(x)的单调区间;
(2)由函数f(x)在区间[1,2]上为单调函数,得f′(x)≥0,分离出a,把右边看为函数,得到函数的单调性得最值,得关于a的不等式,求解得a的取值范围.
解答 解:(1)若a=1时,f(x)=3x-2x2+lnx,定义域为(0,+∞)
f′(x)=$\frac{1}{x}$-4x+3=$\frac{-(4x+1)(x-1)}{x}$(x>0)
令f'(x)>0,得x∈(0,1),令f'(x)<0,得x∈(1,+∞),
函数f(x)=3x-2x2+lnx单调增区间为(0,1),
函数f(x)=3x-2x2+lnx单调减区间为(1,+∞).
(2)f′(x)=$\frac{3}{a}$-4x+$\frac{1}{x}$,
若函数f(x)在区间[1,2]上为单调增函数,
即f′(x)=$\frac{3}{a}$-4x+$\frac{1}{x}$≥0在[1,2]恒成立,
即$\frac{3}{a}$≥4x-$\frac{1}{x}$在[1,2]恒成立,
令h(x)=4x-$\frac{1}{x}$,因函数h(x)在[1,2]上单调递增.
所以$\frac{3}{a}$≥h(2),故$\frac{3}{a}$≥$\frac{15}{2}$,0<a≤$\frac{2}{5}$.
点评 本题考查了利用导数求函数的单调性,和其逆问题,由单调性来确定导数非负或非正,分离参数,利用函数的思想,求最值,得关于a的不等式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $y=-\frac{3}{4}$ | C. | $y=\frac{1}{12}$ | D. | $y=-\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com