精英家教网 > 高中数学 > 题目详情
10.已知函数$f(x)=\frac{3x}{a}-2{x^2}+lnx$,其中a为常数.
(1)若a=1,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,2]上为单调增函数,求a的取值范围.

分析 (1)由a=1得f(x)的解析式,求导,令f′(x)>0,令f′(x)<0分别得出x的取值范围,即f(x)的单调区间;
(2)由函数f(x)在区间[1,2]上为单调函数,得f′(x)≥0,分离出a,把右边看为函数,得到函数的单调性得最值,得关于a的不等式,求解得a的取值范围.

解答 解:(1)若a=1时,f(x)=3x-2x2+lnx,定义域为(0,+∞)
f′(x)=$\frac{1}{x}$-4x+3=$\frac{-(4x+1)(x-1)}{x}$(x>0)
令f'(x)>0,得x∈(0,1),令f'(x)<0,得x∈(1,+∞),
函数f(x)=3x-2x2+lnx单调增区间为(0,1),
函数f(x)=3x-2x2+lnx单调减区间为(1,+∞).
(2)f′(x)=$\frac{3}{a}$-4x+$\frac{1}{x}$,
若函数f(x)在区间[1,2]上为单调增函数,
即f′(x)=$\frac{3}{a}$-4x+$\frac{1}{x}$≥0在[1,2]恒成立,
即$\frac{3}{a}$≥4x-$\frac{1}{x}$在[1,2]恒成立,
令h(x)=4x-$\frac{1}{x}$,因函数h(x)在[1,2]上单调递增.
所以$\frac{3}{a}$≥h(2),故$\frac{3}{a}$≥$\frac{15}{2}$,0<a≤$\frac{2}{5}$.

点评 本题考查了利用导数求函数的单调性,和其逆问题,由单调性来确定导数非负或非正,分离参数,利用函数的思想,求最值,得关于a的不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知实数a,b均大于0,且$({\frac{1}{a}+\frac{1}{b}})\sqrt{{a^2}+{b^2}}≥2m-4$总成立,则实数m的取值范围是(-∞,2+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C 为菱形,B1C与BC1交于点O,AO⊥平面BB1C1C
(1)求证:平面ABC1⊥平面A1B1C;
(2)若AC⊥AB1,∠BCC1=120°,BC=1,求点B1到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,$AB=2AC,cosB=\frac{{2\sqrt{5}}}{5}$,点D在线段BC上.
(1)当BD=AD时,求$\frac{AD}{AC}$的值;
(2)若AD是∠A的平分线,$BC=\sqrt{5}$,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某四棱锥的三视图如图所示,该四棱锥的表面积是(  )
A.32B.16+16$\sqrt{2}$C.48D.16+32$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=-3x2的准线方程是(  )
A.$\frac{3}{4}$B.$y=-\frac{3}{4}$C.$y=\frac{1}{12}$D.$y=-\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)为R上的偶函数,当x>0时,f(x)=log6x,则f(-4)+f(9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设ω>0,将函数f(x)=$\sqrt{2}$cosωx的图象向左平移$\frac{π}{2}$个单位,若所得的图象与原图象重合,则正数ω的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆M:(x-2)2+(y-2)2=2,圆N:x2+(y-8)2=40,经过原点的两直线l1,l2满足l1⊥l2,且l1交圆M于不同两点A,B,l2交圆N于不同两点C,D,记l1的斜率为k.
(1)求k的取值范围;
(2)若四边形ABCD为梯形,求k的值.

查看答案和解析>>

同步练习册答案