分析 根据所给的数列的首项和一个关于通项与n项和的关系,nan-1=(n-2)an-2,(n-1)an-2=(n-3)an-3…5a4=3a3,4a3=2a2,3a2=a1,两边相乘并整理,得:n(n+1)an=2a1,由此能够求出an.
解答 解:∵a1=$\frac{1}{2}$,Sn为数列的前n项和,且Sn与$\frac{1}{{a}_{n}}$的一个等比中项为n,
∴Sn=n2an,Sn-1=(n-1)2an-1,
∴Sn-Sn-1=n2an-(n-1)2an-1=an
(n2-1)an=(n-1)2an-1,(n+1)an=(n-1)an-1,
∴nan-1=(n-2)an-2
(n-1)an-2=(n-3)an-3
…
5a4=3a3,
4a3=2a2,
3a2=a1,
两边相乘:
3×4×5×…×(n-1)n(n+1)an=1×2×3×…×(n-3))(n-2))(n-1)a1
n(n+1)an=2a1,
∴an=$\frac{2{a}_{1}}{n(n+1)}$=$\frac{1}{n(n+1)}$.
点评 本题考查数列的及其应用,解题时要认真审题,熟练掌握公式的灵活运用,解题的关键是得到前n项和与通项之间的关系.
科目:高中数学 来源: 题型:选择题
A. | y=sinx | B. | y=tanx | C. | y=$\frac{1}{2}$x2-$\frac{1}{2}$ | D. | y=x3-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com