精英家教网 > 高中数学 > 题目详情

设M=3x2-x+1,N=2x2+x,则


  1. A.
    M>N
  2. B.
    M<N
  3. C.
    M≤N
  4. D.
    M≥N
D
要比较两数的大小,常用作差比较法.由于M-N=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,所以M≥N.故选D.
练习册系列答案
相关习题

科目:高中数学 来源:学习高手必修五数学苏教版 苏教版 题型:013

设M=3x2-x+1,N=2x2+x,则

[  ]
A.

M>N

B.

M<N

C.

M≤N

D.

M≥N

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnxx2. (1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围; (2)在(1)的条件下,若a>1,h(x)=e3x-3aexx∈[0,ln2],求h(x)的极小值; (3)设F(x)=2f(x)-3x2kx(k∈R),若函数F(x)存在两个零点mn(0<m<n),且满足2x0mn,问:函数F(x)在(x0F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnxx2. (1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围; (2)在(1)的条件下,若a>1,h(x)=e3x-3aexx∈[0,ln2],求h(x)的极小值; (3)设F(x)=2f(x)-3x2kx(k∈R),若函数F(x)存在两个零点mn(0<m<n),且满足2x0mn,问:函数F(x)在(x0F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

同步练习册答案