精英家教网 > 高中数学 > 题目详情
设函数f(x)=alnx,g(x)=
12
x2
(1)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.
分析:(1)化简不等式得a
1
2
x2-x
x-lnx
,设y=
1
2
x2-x
x-lnx
,然后分离出参数a后转化为a≥ymin,利用导数可求得最小值;
(2)由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1)>mg(x2)-x2f(x2)恒成立,设t(x)=
m
2
x2-xlnx
(x>0).由此可判断当x∈(0,+∞)时函数t(x)单调递增,则t′(x)=mx-lnx-1≥0恒成立,分离出参数m,转化求函数最值即可,利用导数求得最值;
解答:解:(1)不等式f(x)+2g′(x)≤(a+3)x-g(x),即为alnx+2x≤(a+3)x-
1
2
x2
,化简得:a(x-lnx)
1
2
x2-x

由x∈[1,e]知x-lnx>0,因而a
1
2
x2-x
x-lnx
,设y=
1
2
x2-x
x-lnx

由y′=
(x-1)(x-lnx)-(1-
1
x
)(
1
2
x2-x)
(x-lnx)2
=
(x-1)(
1
2
x+1-lnx)
(x-lnx)2

∵当x∈(1,e)时,x-1>0,
1
2
x
+1-lnx>0,
∴y′>0在x∈[1,e]时成立,则y=
1
2
x2-x
x-lnx
递增,ymin=-
1
2

由不等式有解,可得知aymin=-
1
2
,即实数a的取值范围是[-
1
2
,+∞).
(2)当a=1,f(x)=lnx.
由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得
mg(x1)-x1f(x1)>mg(x2)-x2f(x2)恒成立,
设t(x)=
m
2
x2-xlnx
(x>0).
由题意知x1>x2>0,故当x∈(0,+∞)时函数t(x)单调递增,
∴t′(x)=mx-lnx-1≥0恒成立,即m
lnx+1
x
恒成立,
因此,记y=
lnx+1
x
,得y′=
-lnx
x2

∵函数在(0,1)上单调递增,在(1,+∞)上单调递减,
∴函数h(x)在x=1时取得极大值,并且这个极大值就是函数h(x)的最大值.
由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1..
点评:本题考查导数在求函数最值中的应用,考查学生分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数F(x)=,在由正数组成的数列{an}中,a1=1,=F(an)(nN*).

(1)求数列{an}的通项公式;

(2)在数列{bn}中,对任意正整数nbn·都成立,设Sn为数列{bn}的前n项和,比较Sn与12的大小;

(3)在点列An(2n,)(nN*)中,是否存在三个不同点AkAlAm,使AkAlAm在一条直线上?若存在,写出一组在一条直线上的三个点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x≠0),在由正数组成的数列{an}中,a1=1,f(an)(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)在数列{bn}中,对任意正整数n,bn·=1都成立,设Sn为数列{bn}的前n项和,比较Sn的大小;

(Ⅲ)在点列An(2n,)(n∈N*)中,是否存在三个不同点Ak、Al、Am,使Ak、Al、Am在一条直线上?若存在,写出一组在一条直线上的三个点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案