精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点为F1,F2,P为椭圆上一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值是2c2,其中$c=\sqrt{{a^2}-{b^2}}$.则椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 设|PF1|=m,|PF2|=n,∠F1PF2=θ.$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=mncosθ≥2c2,在△PF1F2中,由余弦定理可得:4c2=m2+n2-2mncosθ,再利用椭圆的定义、基本不等式的性质即可得出.

解答 解:设|PF1|=m,|PF2|=n,∠F1PF2=θ.
$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=mncosθ≥2c2
在△PF1F2中,由余弦定理可得:4c2=m2+n2-2mncosθ,m+n=2a,
∴2mncosθ≥2mn-4c2=4c2,当且仅当m=n=a时取等号,
∴a2=4c2
解得e=$\frac{c}{a}$=$\frac{1}{2}$,
故选:A.

点评 本题考查了椭圆的定义标准方程及其性质、余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的部分图象如图所示,若不等式-2<f(x+t)<4的解集为(-1,2),则实数t的值为-1.(写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{m}$=($\sqrt{3}$,1),向量$\overrightarrow{n}$是与$\overrightarrow{m}$垂直的单位向量.若向量$\overrightarrow{n}$与向量(1.2)的夹角b锐角,且与向量$\overrightarrow{p}$=(x-y2,$\sqrt{3}$x)垂直,则t=y2+5x2+4的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=(x-1)2+1(x>1)的反函数为(  )
A.y=1+$\sqrt{x-1}$(x>1)B.y=1-$\sqrt{x-1}$(x>1)C.y=1+$\sqrt{x-1}$(x≥1)D.y=1-$\sqrt{x-1}$(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.${(-\frac{27}{8})}^{\frac{1}{3}}$-(-16)0+($\frac{2}{3}$)-2+$\frac{{log}_{9}64}{{log}_{3}4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x$
(1)求函数的单调递增区间
(2)在$△ABC中,f(A)=1,\overrightarrow{AB}•\overline{AC}=4$,求三角形的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinx(sinx+$\sqrt{3}$cosx).
(1)求f(x)的最小正周期和最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=1,a=2$\sqrt{3}$,求三角形ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在自变量的同一变化过程中,下列命题中正确的是(  )
A.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在
B.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,则$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在
C.$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,则$\underset{lim}{x→{x}_{0}}$f(x)=0
D.若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=secx?sinx的最小正周期T=π.

查看答案和解析>>

同步练习册答案