【题目】已知函数,其中,a为实数.
(1)当函数的图像在上与x轴有唯一的公共点时,求实数a的取值范围;
(2)当时,求函数在上的最大值与最小值.
科目:高中数学 来源: 题型:
【题目】2019年10月,德国爆发出“芳香烃门”事件,即一家权威的检测机构在德国销售的奶粉中随机抽检了16款(德国4款,法国8款,荷兰4款),其中8款检测出芳香烃矿物油成分,此成分会严重危害婴幼儿的成长,有些奶粉已经远销至中国.A地区闻讯后,立即组织相关检测员对这8款品牌的奶粉进行抽检,已知该地区有6家婴幼儿用品商店在售这几种品牌的奶粉,甲、乙、丙3名检测员分别负责进行检测,每人至少抽检1家商店,且检测过的商店不重复检测,则甲检测员检测2家商店的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知直线与曲线相切于两点,则对于函数,以下结论成立的是( )
A.有3个极大值点,2个极小值点B.有2个零点
C.有2个极大值点,没有极小值点D.没有零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,则与最接近的是(当较小时, )
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个圆锥形量杯的高为厘米,其母线与轴的夹角为.
(1)求该量杯的侧面积;
(2)若要在该圆锥形量杯的一条母线上,刻上刻度,表示液面到达这个刻度时,量杯里的液体的体积是多少.当液体体积是立方厘米时,刻度的位置与顶点之间的距离是多少厘米(精确到厘米)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com