精英家教网 > 高中数学 > 题目详情

【题目】已知依次满足

(1)求点的轨迹;

(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;

(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.

【答案】(1)以原点为圆心,为半径的圆; (2); (3)存在点,其坐标为,使得直线与以为圆心的圆相切

【解析】

1)利用表示出,从而得到轨迹方程;(2)利用直线与圆相切得到,将直线方程代入椭圆方程,得到,利用求得,从而得到椭圆方程;(3)利用圆心到直线距离等于半径得到,再利用在椭圆上可以求解出点坐标,从而可求得结果.

(1)设

则:

代入得:

的轨迹是以原点为圆心,为半径的圆

(2)由题意可知直线斜率存在,设直线的方程为……①

椭圆的方程……②

与圆相切得:

将①代入②得:

,可得

椭圆方程为:

(3)假设存在椭圆上的一点,使得直线与以为圆心的圆相切

到直线的距离相等,又

化简整理得:

点在椭圆上

解得:(舍)

时,

椭圆上存在点,其坐标为

使得直线与以为圆心的圆相切

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数

讨论的单调性;

的极值点,且曲线在两点 处的切线相互平行,这两条切线在轴上的截距分别为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,ABCDABEPC中点.

(Ⅰ)证明:BE∥平面PAD

(Ⅱ)若AB⊥平面PBC,△PBC是边长为2的正三角形,求点E到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是_________.

1)命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则.

2)命题“”的否定“.

3)若为假命题,则均为假命题.

4)“”是“直线与直线平行”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在教材中,我们已研究出如下结论:平面内条直线最多可将平面分成个部分.现探究:空间内个平面最多可将空间分成多少个部分,.设空间内个平面最多可将空间分成个部分.

(1)求的值;

(2)用数学归纳法证明此结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以椭圆的中心为圆心,为半径的圆称为该椭圆的准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足.

1)求椭圆及其准圆的方程;

2)若椭圆准圆的一条弦与椭圆交于两点,试证明:当时,弦的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,讨论函数的单调区间;

(Ⅱ)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆在左、右焦点分别为,上顶点为点,若是面积为的等边三角形.

1)求椭圆的标准方程;

2)已知是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).

查看答案和解析>>

同步练习册答案