精英家教网 > 高中数学 > 题目详情
函数y=
25-x2
+logsinx(2sinx-1)的定义域为
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数有意义的条件,建立不等式,解不等式,即可得到结论.
解答: 解:要使函数有意义,x应满足:
25-x2≥0
2sinx-1>0
sinx>0
sinx≠1
,即
-5≤x≤5
sinx>
1
2
sinx≠1
,画图如下:

解得-5≤x<-
2
,或-
2
<x<-
6
,或
π
6
<x
π
2
,或
π
2
<x<
6

故函数的定义域为{x|-5≤x<-
2
,或-
2
<x<-
6
,或
π
6
<x
π
2
,或
π
2
<x<
6
},
故答案为:{x|-5≤x<-
2
,或-
2
<x<-
6
,或
π
6
<x
π
2
,或
π
2
<x<
6
}
点评:本题考查函数的定义域,考查三角函数的性质,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sin(x-
π
4
),cosx),
b
=(cos(x+
π
4
),cosx),函数f(x)=
a
b

(Ⅰ)若a∈(-
π
8
π
8
)且f(a)=
3
2
10
,求cos2a的值;
(Ⅱ)将函数y=f(x)的图象向左平移
π
4
个单位,再将所得图象上所有点的横坐标缩短为原来的一半(纵坐标不变),得到函数y=g(x)的图象,求函数g(x)在x∈[0,
π
4
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x-1,
(1)求f(1),f(-1),f[(-1)],f{f[f(-3)]}
(2)若f(x)=7,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)的导函数为f′(x),且f′(x)>2x,f(1)=2,则不等式f(x)-x2>1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2lga+2x+4lga的最小值为-3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+y+2=0与A(-2,3),B(3,2)的线段有交点,则a的取值范围为(  )
A、(-∞,-
4
3
]∪[
5
2
,+∞)
B、(-∞,-
4
3
]
C、[
5
2
,+∞})
D、[-
4
3
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=sin(2x-
π
3
)+2的图象,只需将函数y=sin2x的图象按
a
平移即可,则
a
可以是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:a-4<x<a+4,q:2<x<3,若p是q的必要条件,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x<6},B={x|2<x<9}.则∁R(A∩B)=
 

查看答案和解析>>

同步练习册答案