精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点分别为,离心率为,且椭圆四个顶点构成的菱形面积为

(1)求椭圆C的方程;

(2)若直线l :y=x+m与椭圆C交于M,N两点,以MN为底边作等腰三角形,顶点为P(3,-2),求m的值及△PMN的面积.

【答案】(1);(2)

【解析】

1)根据离心率和菱形面积,得到关于的方程,解出得到椭圆方程.

2)直线与椭圆联立,利用韦达定理得到,得到中点坐标,然后利用等腰三角形三线合一,即底边中线与底边垂直,构造方程,求出中点坐标,利用弦长公式求出的长,利用点到直线的距离,求出底边上的高,从而得到的面积.

(1)椭圆四个顶点构成的菱形面积为

椭圆离心率为

解得,故所求椭圆C的方程为:

(2)设的中点为

消去得:

由韦达定理得:

所以

, 解得 ,满足

顶点到底边的距离为:

所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l方程为(m+2x-m+1y-3m-7=0mR

(Ⅰ)求证:直线l恒过定点P,并求出定点P的坐标;

(Ⅱ)若直线lx轴,y轴上的截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A,1.5小时以上,B,1-1.5小时,C,0.5-1小时,D,0.5小时以下.图(1),(2)是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

(1)本次一共调查了多少名学生.

(2)在图(1)中将对应的部分补充完整.

(3)若该校有3000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5小时以下?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)如图(1)所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率;

(2)如图(2)所示,双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,求此双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|xa|,a<0.

(1)证明:f(x)+f≥2;

(2)若不等式f(x)+f(2x)<的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,分别为内角所对的边,且满足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆的圆心在直线上,且该圆经过两点.

1)求圆的标准方程;

2)若斜率为的直线与圆相交于两点,试求面积的最大值和此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门对某工厂甲、乙两个车间生产的个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过克的为合格.

(1)质检部门从甲车间个零件中随机抽取件进行检测,若至少件合格,检测即可通过,若至少件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;

(2)若从甲、乙两车间个零件中随机抽取个零件,用表示乙车间的零件个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若直线过点且到圆心的距离为,求直线的方程;

2)设过点的直线与圆交于两点(的斜率为负),当时,求以线段为直径的圆的方程.

查看答案和解析>>

同步练习册答案