精英家教网 > 高中数学 > 题目详情

【题目】以下利用斜二测画法得到的结论,其中正确的是(

A.相等的角在直观图中仍相等B.相等的线段在直观图中仍相等

C.平行四边形的直观图是平行四边形D.菱形的直观图是菱形

【答案】C

【解析】

根据斜二测画法的规则,分别判断每个图象的变化情况即可得解.

根据斜二测画法的规则可知,平行于坐标轴的直线平行性不变,平行轴的线段长度不变,平行于轴的长度减半;

对于,平面图形中的直角,在直观图中变为角,不再相等,所以错误;

对于,根据斜二测画法知,相等的线段在直观图中不一定相等,所以错误;

对于,根据平行性不变原则,平行四边形的直观图仍然是平行四边形,所以正确;

对于,菱形的直观图中高的长度减半,对应的直观图不再是菱形,所以错误.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.则获得复赛资格的人数为(  )

A. 520 B. 540 C. 620 D. 640

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)若函数上单调递增,求实数的取值范围;

)若函数在区间上的最大值为,最小值为,令,求的解析式及其最小值(注:为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)若的一个极值点,求函数表达式, 并求出的单调区间;

Ⅱ)若,证明当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的等腰梯形ABCD中,ECD中点.若沿AE将三角形DAE折起,并连接DBDC,得到如图所示的几何体D-ABCE,在图中解答以下问题:

1)设GAD中点,求证:平面GBE

2)若平面平面ABCE,且FAB中点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从含有两件正品a1a2和一件次品b13件产品中每次任取1件,

每次取出后不放回,连续取两次.

1)求取出的两件产品中恰有一件次品的概率;

2)如果将每次取出后不放回这一条件换成每次取出后放回,则取出的两件产品中恰有一件次品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在原点,焦点在轴上,离心率,点分别为椭圆的左右焦点,过右焦点且垂直于长轴的弦长为.

1)求椭圆的标准方程;

2)过椭圆左焦点作直线,交椭圆于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且

1)求证数列是等差数列,并求数列的通项公式;

2)记,求

3)是否存在实数k,使得对任意都成立?若存在,求实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案