精英家教网 > 高中数学 > 题目详情
13.已知定义域为R的函数f(x),满足对任意x∈R,都有f(1+x)=f(1-x),且f(-x)=f(x),当x∈[0,1]时,f(x)=x,若函数g(x)=$\left\{\begin{array}{l}{lgx}&{(x>0)}\\{\frac{-2}{x-1}}&{(x≤0)}\end{array}\right.$,则函数y=f(x)-g(x)在区间[-11,11]上的零点的个数是(  )
A.18B.19C.20D.21

分析 根据条件关系,求出函数f(x)的表达式,作出f(x)与g(x)的图象,利用数形结合判定两个函数图象的交点即可的结论.

解答 解:令x=x+1,由f(1+x)=f(1-x),
得到f(x+2)=f(1-x-1)=f(-x),
∵f(-x)=f(x),
∴f(x+2)=f(x),
∴f(x)为以2为周期的周期函数,
∵x∈[0,1]时,f(x)=x,
当x∈[-1,0],f(x)=-x,
作出函数f(x)与g(x)的图象,
由图象可知,两个图象有19个交点,
即函数y=f(x)-g(x)在区间[-11,11]上零点的个数是19个.
故选:B.

点评 此题考查了函数与方程的知识,考查了转化与化归和数形结合的数学思想,由函数的三条件基本性质进行分解,从而确定出函数f(x)在[-11,11]上的分段函数解析式,作出函数图象是本题的突破点.难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知锐角△ABC的内角A=$\frac{π}{3}$,点0为三角形外接圆的圆心,若$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$,则2x-y的范围为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平行于x轴,且过点(3,2)的直线的方程为(  )
A.x=3B.y=2C.y=$\frac{3}{2}$xD.y=$\frac{2}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(2,x)与向量$\overrightarrow{b}$=(4x+2,3)方向相同,则$\overrightarrow{a}$+2$\overrightarrow{b}$=(8,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(1,3),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则x的取值范围是{x|x>-$\frac{2}{3}$且x≠6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tanα=3.
(1)求$\frac{sinα-4cosα}{5sinα+2cosα}$及sin2α十2sinαcosα的值;
(2)若π<α<$\frac{3π}{2}$,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=ax2+bx+c的图象过点(0,1),且有唯一的零点-1.
(I)求f(x)的表达式;
(Ⅱ)求函数F(x)=f(x)-7x,x∈[-2,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知z=$\frac{(3-4i)^{2}(-\frac{\sqrt{3}}{2}-\frac{1}{2}i)^{10}}{(\sqrt{2}-\sqrt{3}i)^{4}}$,求|z|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.324和135的最大公约数是27,324(5)=1121(4)

查看答案和解析>>

同步练习册答案