【题目】已知函数.
(1)求的单调区间;
(2)若, 在区间恒成立,求a的取值范围.
【答案】(1)时, 是增区间, 时,增区间是,减区间是, 时,增区间是,减区间是;(2).
【解析】试题(1)先求函数导数,根据a的范围讨论导函数在定义区间上零点,根据导函数零点情况确定导函数符号变化情况,最后根据导函数符号确定单调区间,(2)作差函数,求导,根据基本不等式确定导函数恒大于零,根据函数单调性确定最小值,根据最小值非负得a的取值范围.
试题解析:(1) 的定义域为.
,
(1)若即,则故在单调增加.
(ii)若,而,故,则当时, ;
当或时, ;故在单调减少,在单调增加.
(iii)若,即,同理可得在单调减少,在单调递增.
(2)由题意得恒成立.设, 则 ,所以在区间上是增函数,只需即 .
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,离心率为,是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有、、、四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.
甲说:“、同时获奖.”
乙说:“、不可能同时获奖.”
丙说:“获奖.”
丁说:“、至少一件获奖”
如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )
A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“t∈R,A∩B≠”是真命题,则实数a的取值范围是( )
A.B.
C.D.,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为’(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知直线与轴交于点,且与曲线交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点分别为和,短轴的两个端点分别为和,点在椭圆上,且满足,当变化时,给出下列三个命题:
①点的轨迹关于轴对称;②的最小值为2;
③存在使得椭圆上满足条件的点仅有两个,
其中,所有正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:的离心率是,过焦点且垂直于x轴的直线被椭圆截得的弦长为.
求椭圆C的方程;
过点的动直线l与椭圆C相交于A,B两点,在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有?若存在,求点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列:、、、、,若不改变,仅改变、、、中部分项的符号(可以都不改变),得到的新数列称为数列的一个生成数列,如仅改变数列、、、、的第二、三项的符号,可以得到一个生成数列:、、、、.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能的值;
(2)若生成数列的通项公式为,求;
(3)用数学归纳法证明:对于给定的,的所有可能值组成的集合为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com