精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求的单调区间;

(2)若, 在区间恒成立,求a的取值范围.

【答案】(1)时, 是增区间, 时,增区间是,减区间是 时,增区间是,减区间是;(2).

【解析】试题(1)先求函数导数,根据a的范围讨论导函数在定义区间上零点,根据导函数零点情况确定导函数符号变化情况,最后根据导函数符号确定单调区间,(2)作差函数,求导,根据基本不等式确定导函数恒大于零,根据函数单调性确定最小值,根据最小值非负得a的取值范围.

试题解析:(1) 的定义域为.

(1)若,则单调增加.

(ii)若,而,故,则当时, ;

时, ;故单调减少,在单调增加.

(iii)若,即,同理可得单调减少,在单调递增.

(2)由题意得恒成立.设, 则 ,所以在区间上是增函数,只需 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为是椭圆上的一个动点,且面积的最大值为.

(1)求椭圆的方程;

(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.

甲说:“同时获奖.”

乙说:“不可能同时获奖.”

丙说:“获奖.”

丁说:“至少一件获奖”

如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={xy|x-42+y2=1}B={xy|x-t2+y-at+22=1},如果命题tRAB是真命题,则实数a的取值范围是(  )

A.B.

C.D.,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为’(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求的直角坐标方程;

(2)已知直线轴交于点,且与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C的离心率是,过焦点且垂直于x轴的直线被椭圆截得的弦长为

求椭圆C的方程;

过点的动直线l与椭圆C相交于AB两点,在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有?若存在,求点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若不改变,仅改变中部分项的符号(可以都不改变),得到的新数列称为数列的一个生成数列,如仅改变数列的第二、三项的符号,可以得到一个生成数列:.已知数列为数列的生成数列,为数列的前项和.

1)写出的所有可能的值;

2)若生成数列的通项公式为,求

3)用数学归纳法证明:对于给定的的所有可能值组成的集合为.

查看答案和解析>>

同步练习册答案