【题目】已知圆,圆过作圆的切线,切点为(在第二象限).
(1)求的正弦值;
(2)已知点,过点分别作两圆切线,若切线长相等,求关系;
(3)是否存在定点,使过点有无数对相互垂直的直线满足,且它们分别被圆、圆所截得的弦长相等?若存在,求出所有的点;若不存在,请说明理由.
【答案】(1);(2);(3)存在且其坐标为或者.
【解析】
(1)连接,利用可求的正弦值.
(2)利用直线与圆相切求出过且与两圆相切的切线长,整理后可得所求的关系式.
(3)设的斜率为且,利用、分别被圆、圆所截得的弦长相等且两圆半径相等得到对无穷多个恒成立,整理后可得关于的方程组,从而可求的坐标.
(1)连接,因为与相切于,故.
又,
在中,,故.
(2)因为过作两圆的切线且切线长相等,
故,整理得到,
故的关系为.
(3)设的斜率为且,
则,,
因为它们分别被圆、圆所截得的弦长相等且两圆半径相等,
所以到直线的距离等于到直线的距离,
故即对无穷多个恒成立,
所以对无穷多个恒成立.
故,解得或者.
故存在且其坐标为或者.
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.
(1)判断函数是不是函数的“渐近函数”,说明理由;
(2)求证:函数不是函数的“渐近函数”;
(3)若函数,,求证:当且仅当时,是的“渐近函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额 (百元)的频率分布直方图如图所示:
(1)求网民消费金额的平均值和中位数;
(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关;
男 | 女 | 合计 | |
30 | |||
合计 | 45 |
附表:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是
A. A B. B C. C D. D
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,圆的参数方程为(为参数),以原点为极点,以轴为非负半轴为极轴建立极坐标系.
(1)求圆的普通方程与极坐标方程;
(2)若直线的极坐标方程为,求圆上的点到直线的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中, , , , 为线段的中点, 为线段的三等分点(如图1).将沿着折起到的位置,连接(如图2).
(1)若平面平面,求三棱锥的体积;
(2)记线段的中点为,平面与平面的交线为,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有6个完全相同的小球,分别标号为1,2,3,4,5,6.
(1)一次取出两个小球,求其号码之和能被3整除的概率;
(2)有放回的取球两次,每次取一个,求两个小球号码是相邻整数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,下列命题正确的是
A.如果一个角的两边和另一角的两边分别平行,那么这两个角相等
B.两条异面直线所成的有的范围是
C.如果两个平行平面同时与第三个平面相交,那么它们的交线平行
D.如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com