精英家教网 > 高中数学 > 题目详情
10.设函数$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,则$f(\frac{1}{f(2)})$=$\frac{1}{16}$,若f(x)=3,则x=$\sqrt{3}$.

分析 由函数$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,将x=2代入可得$f(\frac{1}{f(2)})$值,分类讨论若f(x)=3的x值,综合讨论结果,可得答案.

解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,
∴$f(\frac{1}{f(2)})$=f($\frac{1}{4}$)=$\frac{1}{16}$,
若x≤-1,解f(x)=x+2=3得:x=1(舍去)
若-1<x<2,解f(x)=x2=3得:x=$\sqrt{3}$,或x=-$\sqrt{3}$(舍去)
若x≥2,解f(x)=2x=3得:x=$\frac{3}{2}$(舍去)
综上所述,若f(x)=3,则x=$\sqrt{3}$.
故答案为:$\frac{1}{16}$,$\sqrt{3}$

点评 本题考查的知识点是分段函数的应用,已知函数值求自变量,就是解方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率与双曲线x2-y2=1的离心率互为倒数,且C过点P($\sqrt{2},1$).
(1)求C的方程;
(2)若C的左右焦点分别为F1,F2,过F1的直线l与C相交于A,B两点,求△F2AB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=logsinβ(x2+ax+3)在区间(-∞,1)上递增,则实数a的取值范围是(  )
A.(-4,-2]B.[-4,-2]C.(-4,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三个数为$a={log_3}0.2,b={3^{0.2}},c={0.2^3}$,则a,b,c的大小关系为(  )
A.a>c>bB.a<b<cC.a<c<bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,已知a=$\sqrt{2}$,c=3,B=45°,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四对函数中,f(x)与g(x)是同一函数的是(  )
A.$f(x)=\sqrt{x+1}\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$B.$f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1
C.f(x)=ln(1-x)+ln(1+x),g(x)=ln(1-x2D.f(x)=lgx2,g(x)=2lgx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\sqrt{3}sinωx+cosωx(ω>0)$的最小正周期为π.对于函数f(x),下列说法正确的是(  )
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函数
B.图象关于直线$x=\frac{5π}{12}$对称
C.图象关于点$(-\frac{π}{3},0)$对称
D.把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={1,3},集合B={1,2,5},则集合A∪B=(  )
A.{1,2,5}B.{1}C.{1,2,3,5}D.{2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若sinα>0,则(  )
A.cos2α>0B.tan2α>0C.$cos\frac{α}{2}>0$D.$tan\frac{α}{2}>0$

查看答案和解析>>

同步练习册答案