精英家教网 > 高中数学 > 题目详情
14.已知命题p:存在x∈(-∞,1)使得x2-4x+m=0成立,命题q:方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m+8}$=1表示焦点在x轴上的椭圆.
(1)若p是真命题,求实数m的取值范围;
(2)若p或q是假命题,求实数m的取值范围.

分析 (1)根据函数的单调性求出m的范围即可;(2)分别求出p,q为假时的m的范围,取交集即可.

解答 解:(1)命题p:存在x∈(-∞,1)使得x2-4x+m=0成立,
令f(x)=x2-4x+m,则f(1)=m-3<0,解得:m<3,
故p为真时:m∈(-∞,3);
(2)p真:m<3,
命题q:方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m+8}$=1表示焦点在x轴上的椭圆.
q为真时:m2>2m+8>0,解得:m>4或-8<m<-2,
若p或q是假命题,则p假q假,
$\left\{\begin{array}{l}{m≥3}\\{-2≤m≤4或m≤-8}\end{array}\right.$,解得:3≤m≤4
∴m的取值范围为:[3,4].

点评 本题考查了椭圆的性质,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数y=loga(1+2x+3x+m)的值域为R,那么实数m的取值范围为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alnx-ax-3(a≠0),求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$(3\frac{3}{8})^{-\frac{2}{3}}-(5\frac{4}{9})^{0.5}+$$(0.008)^{-\frac{2}{3}}×(0.02)^{\frac{1}{2}}$×$(0.32)^{\frac{1}{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数$f(x)=x+\frac{1}{x}$
(1)判断函数的奇偶性;
(2)探究函数y=f(x)在[1,+∞)上的单调性,并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额),如下表:
年份20102011201220132014
储蓄存款y(千亿元)567810
(1)求y关于x的回归方程 $\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)用所求的回归方程预测该地区2015年的人民币储蓄存款.
注:$\left\{\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示,则这个几何体的表面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.历届现代奥运会召开时间表如下,则n的值为(  )
年份1896年1900年1904年2016年
届数123n
A.28B.29C.30D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,已知a1+a4+a7=9,a3+a6+a9=21,
(Ⅰ)求数列{an}的通项an
(Ⅱ)求数列{an}的前9项和S9
(Ⅲ)若${c_n}={2^{{a_n}+3}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案