【题目】如图,在三棱锥中,已知是正三角形, 平面为的中点, 在棱上,且.
(1)求三棱锥的体积;
(2)求证: 平面;
(3)若为中点, 在棱上,且,求证: 平面.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】试题分析:(1)由求解即可;(2)在底面中,取的中点,连接,由题意证明,利用面面垂直的性质定理证明平面,则可得,即可证明结论;(3) 连接, ,设,证明,则∥,即可证明结论.
试题解析:
(1)因为△是正三角形,且,
所以.
又⊥平面,
故==S△BCD.
(2)在底面中,取的中点,连接,
因,故.
因,故为的中点. 为的中点,
故∥,则
故因平面平面,
故平面平面.
△是正三角形, 为的中点,
故,故平面.
平面,故.
又,
故平面.
(3)当时,连接, .
设,因为的中点, 为中点,
故为△的重心, .
因= = ,
故,
所以∥.
又平面平面,
所以∥平面.
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,函数与在处的切线互相垂直,求的值;
(2)若函数在定义域内不单调,求的取值范围;
(3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中且.设.
()若,,,求方程在区间内的解集.
()若函数满足:图象关于点对称,在处取得最小值,试确定、和应满足的与之等价的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质检过后,某校为了解科班学生的数学、物理学习情况,利用随机数表法从全年极名理科生抽取名学生的成绩进行统计分析.已知学生考号的后三位分别为.
(Ⅰ)若从随机数表的第行第列的数开始向右读,请依次写出抽取的前人的后三位考号;
(Ⅱ)如果题(Ⅰ)中随机抽取到的名同学的数学、物理成绩(单位:分)对应如下表:
数学成绩 | 87 | 91 | 90 | 89 | 93 |
物理成绩 | 89 | 90 | 91 | 88 | 92 |
求这两科成绩的平均数和方差,并且分析哪科成绩更稳定。
附:(下面是摘自随机数表的第行到第6行)
………
………
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过点,且与圆相内切.
(I)求动圆的圆心的轨迹方程;
(II)设直线(其中与(1)中所求轨迹交于不同两点,D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com