分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,可得球的半径R,即可求出三棱锥P-ABC外接球的表面积.
解答 解:根据已知中底面△ABC是边长为$\sqrt{3}$的正三角形,PA⊥底面ABC,
可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球
∵△ABC是边长为$\sqrt{3}$的正三角形,
∴△ABC的外接圆半径r=1,
球心到△ABC的外接圆圆心的距离d=1
故球的半径R=$\sqrt{2}$
故三棱锥P-ABC外接球的表面积S=4πR2=8π
故答案为:8π.
点评 本题考查的知识点是球内接多面体,正确求出球的半径R是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,3) | B. | (-1,0) | C. | (0,2) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com