精英家教网 > 高中数学 > 题目详情
9.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1).

分析 利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.

解答 解:设切点P(m,m3),
由y=x3的导数为y′=3x2
可得切线的斜率为k=3m2
由切线与直线y=3x+2平行,
可得3m2=3,解得m=±1,
可得P(1,1),(-1,-1).
P(-1,-1)在直线y=3x+2上,舍去.
故答案为:(1,1).

点评 本题考查导数的几何意义:导数在切点处的值是切线的斜率,同时考查两直线平行的条件:斜率相等,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设等差数列{an}的前n项和为Sn,其公差为-1,若S1,S2,S4成等比数列,则a1=(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}是公差d≠0的等差数列,a2,a6,a22成等比数列,a4+a6=26;数列{bn}是公比q为正数的等比数列,且b3=a2,b5=a6
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.柯西不等式是由数学家柯西在研究数学分析中的“流数”问题时得到的.具体表述如下:对任意实数a1,a2,…,an和b1,b2,…bn(n∈N+,n≥2),都有(a12+a22+…+an2)(b12+b22+…bn2)≥(a1b1+a2b2+…+anbn2
(1)证明n=2时柯西不等式成立,并指出等号成立的条件;
(2)若对任意x∈[2,6],不等式3$\sqrt{x-2}$+2$\sqrt{6-x}$≤m恒成立,求实数m的取值范围(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正方体的体积为64,则与该正方体各面均相切的球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.
(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;
(2)若直线AB1与平面A1BC1所成角的正弦值为$\frac{2}{5}$,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在长方体ABCD-A1B1C1D1中,AA1=2AB,AB=BC,则下列结论中正确的是(  ) 
A.BD1∥B1CB.A1D1∥平面AB1CC.BD1⊥ACD.BD1⊥平面AB1C

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设向量$\overrightarrow{a}$=(0,2),$\overrightarrow{b}$=($\sqrt{3}$,1),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角等于$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案