A. | 25π | B. | 50π | C. | 100π | D. | 200π |
分析 如图所示,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA⊥底面ABCD,可得OO1⊥底面ABCD.可得点O是四棱锥S-ABCD外接球的球心,SC是外接球的直径,即可得出结论.
解答 解:如图所示连接AC,BD相交于点O1.取SC的中点,连接OO1.
则OO1∥SA.
∵SA⊥底面ABCD,
∴OO1⊥底面ABCD.
可得点O是四棱锥S-ABCD外接球的球心.
因此SC是外接球的直径.
∵SC=5$\sqrt{2}$,∴4R2=50,
∴四棱锥P-ABCD外接球的表面积为4πR2=50π.
故选B.
点评 本题考查了线面垂直的性质、三角形的中位线定理、正方形的性质、勾股定理、球的表面积,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0<a≤1或a≥9 | B. | a≤1或a≥9 | C. | 1≤a≤9 | D. | a≥9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com