精英家教网 > 高中数学 > 题目详情
2.如图,已知四棱锥S-ABCD的底面为矩形且SA⊥底面ABCD,若侧棱SC=5$\sqrt{2}$,则此四棱锥的外接球表面积为(  )
A.25πB.50πC.100πD.200π

分析 如图所示,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA⊥底面ABCD,可得OO1⊥底面ABCD.可得点O是四棱锥S-ABCD外接球的球心,SC是外接球的直径,即可得出结论.

解答 解:如图所示连接AC,BD相交于点O1.取SC的中点,连接OO1
则OO1∥SA.
∵SA⊥底面ABCD,
∴OO1⊥底面ABCD.
可得点O是四棱锥S-ABCD外接球的球心.
因此SC是外接球的直径.
∵SC=5$\sqrt{2}$,∴4R2=50,
∴四棱锥P-ABCD外接球的表面积为4πR2=50π.
故选B.

点评 本题考查了线面垂直的性质、三角形的中位线定理、正方形的性质、勾股定理、球的表面积,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“x=1”是“x2+x-2=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若命题:“?x∈R,使得ax2+(a-3)x+1<0”为假命题.则实数a的范围为(  )
A.0<a≤1或a≥9B.a≤1或a≥9C.1≤a≤9D.a≥9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知cos(θ+$\frac{5π}{12}$)=-$\frac{\sqrt{2}}{2}$,且θ为锐角,则cos($\frac{π}{4}$-θ)的值为(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C1:$\frac{{x}^{2}}{4}$+y2=1和圆C2:x2+y2=4,A,B,F分别为椭圆C1左顶点、右顶点和左焦点.
(1)点P是曲线C2上位于第一象限的一点,若△OPF的面积为$\frac{3}{2}$,求∠OPB;
(2)点M和N分别是椭圆C1和圆C2上位于x轴上方的动点,且直线AN的斜率是直线AM斜率的2倍,证明直线MN⊥x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线方程为(2+2m)x+(1-m)y+4=0.
(1)该直线是否过定点?如果存在,请求出该点坐标,如果不存在,说明你的理由;
(2)当m为何值时,点Q(3,4)到直线的距离最大,最大值为多少?
(3)当m在什么范围时,该直线与两坐标轴负半轴均相交?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}为等差数列,且a1+a7+a13=4π,则cos(a2+a12)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{x-1≥0}\\{y-1≥0}\end{array}\right.$,则$\frac{x+y}{x}$的取值范围是[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足(-1+3i)z=2(1+i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案