精英家教网 > 高中数学 > 题目详情
2.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).

分析 (1)利用k2计算公式即可得出.
(2)由图表知这80位师范类毕业生从事与教育有关工作的频率.
(3)由题意知X服从$B({4,\frac{13}{16}})$,即可得出E(X).

解答 解:(1)由题意得k2=$\frac{80×(30×5-35×10)^{2}}{40×40×65×15}$=$\frac{80}{39}$<3.841.
故不能在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”
(2)由图表知这80位师范类毕业生从事与教育有关工作的频率$p=\frac{65}{80}=\frac{13}{16}$.
(3)由题意知X服从$B({4,\frac{13}{16}})$,则$EX=np=4×\frac{13}{16}=\frac{13}{4}$.

点评 本题考查了独立性检验原理、二项分布列及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足${a_n}+{a_{n-1}}={({-1})^{\frac{{n({n+1})}}{2}}}n,{S_n}$是其前n项和,若S2017=-1007-b,且a1b>0,则$\frac{1}{a_1}+\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$g(x)=alnx+\frac{1}{2}{x^2}+({1-b})x$.
(1)若g(x)在点(1,g(1))处的切线方程为8x-2y-3=0,求a,b的值;
(2)若b=a+1,x1,x2是函数g(x)的两个极值点,试比较-4与g(x1)+g(x2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表):
零件数x(个)1020304050
加工时间y(分钟)6268758189
由最小二乘法求得回归方程 $\widehat{y}$=0.67x+a,则a的值为54.9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$∠A=\frac{π}{3},BC=4\sqrt{3}$,则△ABC的周长为(  )
A.$4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$B.$4\sqrt{3}+8sin(B+\frac{π}{3})$C.$4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$D.$4\sqrt{3}+8cos(B+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某名学生默写英语单词“bookkeeper(会计)”,他记得这个单词是由3个“e”,2个“o”,2个“k”,b,p,r各一个组成,2个“o”相邻,3个“e”恰有两个相邻,o,e都不在首位,他按此条件任意写出一个字母组合,则他写对这个单词的概率为(  )
A.$\frac{1}{9600}$B.$\frac{1}{18000}$C.$\frac{1}{4500}$D.$\frac{1}{10800}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}满足a4-a2=4,a3=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足${b_n}={(\sqrt{2})^{a_n}}$,求数列{bn}的前8项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是(  )
A.不存在${x_0}∈R,{2^{x_0}}>0$B.?x∈R,2x>0
C.$?{x_0}∈R,{2^{x_0}}≥0$.D.?x∈R,2x≤0

查看答案和解析>>

同步练习册答案