精英家教网 > 高中数学 > 题目详情

【题目】继空气净化器之后,某商品成为人们抗雾霾的有力手段,根据该商品厂提供的数据,从2015年到2018年,购买该商品的人数直线上升,根据统计图, 说法错误的是(

A. 连续3年,该商品在1月的销售量增长显著。

B. 201711月到20182月销量最多。

C. 从统计图上可以看出,2017年该商品总销量不超过6000台。

D. 20182月比20172月该商品总销量少。

【答案】C

【解析】

根据统计图对各选项进行一一验证可得答案.

解:根据统计图,对比每年一月份数量,可得该商品在1月的销售量增长显著,A正确;201711月到20182月销量最多,B正确;在2017年该商品总销量超过6000台,C错误;20182月比20172月该商品总销量少,D正确;

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的一个顶点,且椭圆N的离心率为.

1)求椭圆N的方程;

2)已知是椭圆N的左焦点,过作两条互相垂直的直线交椭圆N两点,交椭圆N两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点是,直线分别与抛物线相交于点和点,过的直线与圆相切.

(1)求直线的方程(含);

(2)若线段与圆交于点,线段与圆交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(如图(1))和女生身高情况的频率分布直方图(如图(2)).已知图(1)中身高在170175cm的男生有16名.

1)试问在抽取的学生中,男、女生各有多少名?

身高≥170cm

身高<170cm

总计

男生

女生

总计

2)根据频率分布直方图,完成下面的2×2列联表,并判断能有多大(百分数)的把握认为身高与性别有关?

附:参考公式和临界值表

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆过点,焦点,圆的直径为

(1)求椭圆及圆的方程;

(2)设直线与圆相切于第一象限内的点,直线与椭圆交于两点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆)的上顶点为,圆经过点

(1)求椭圆的方程;

(2)过点作直线交椭圆两点,过点作直线的垂线交圆于另一点.若△PQN的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.

y(微克)

x(千克)

3

38

11

10

374

-121

-751

其中

(I)根据散点图判断,,哪一个适宜作为蔬菜农药残量与用水量的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)若用解析式作为蔬菜农药残量与用水量的回归方程,求出的回归方程.(c,d精确到0.1)

(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)

附:参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案