精英家教网 > 高中数学 > 题目详情

【题目】函数g(x)=log2 (x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为

【答案】﹣ <m≤﹣
【解析】解:当x>0时,0< <2,
且函数y= 在(0,+∞)上单调递增,
y=log2x在(0,2)上单调递增,
且y<1;
故若关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,
则|g(x)|=0或0<|g(x)|<1,0<|g(x)|<1或|g(x)|≥1;
若|g(x)|=0,则2m+3=0,故m=﹣
故|g(x)|=0或|g(x)|= ,不成立;
故0<|g(x)|<1或|g(x)|≥1;

解得,﹣ <m≤﹣
所以答案是:﹣ <m≤﹣

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一组数据:1,1,4,5,5,5,则这组数据的众数和中位数分别是(
A.5和4
B.5和4.5
C.5和5
D.1和5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 并且满足2Sn=an2+n,an>0(n∈N*).
(1)求a1 , a2 , a3
(2)猜想{an}的通项公式,并加以证明;
(3)设x>0,y>0,且x+y=1,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为( )

A.20
B.25
C.30
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设

(1)判断函数零点的个数,并给出证明;

(2)首项为的数列满足:①;②.其中.求证:对于任意的,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)判断直线能否与曲线相切,并说明理由;

(Ⅱ)若不等式有且仅有两个整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“特罗卡”是靶向治疗肺癌的一种药物,为了研究其疗效,医疗专家借助一些肺癌患者,进行人体试验,得到如右丢失一些数据的2×2列联表:
疫苗效果试验列

感染

未感染

总计

没服用

20

30

50

服用

X

y

50

总计

M

N

100

设从没服用该药物的肺癌患者中任选两人,未感染人数为ξ;从服用该药物的肺癌患者中任选两人,未感染人数为η,研究人员曾计算过得出:P(ξ=0)= P(η=0).
(1)求出列联表中数据x,y,M,N的值.
(2)能否有97.5%的把握认为该药物对治疗肺癌有疗效吗?

P(K2≥k0

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

注:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)定义在实数集R上的奇函数,当x≥0时,函数y=f(x)的图象如图所示(抛物线的一部分).

(1)在原图上画出x<0时函数y=f(x)的示意图;
(2)求函数y=f(x)的解析式(不要求写出解题过程);
(3)写出函数y=|f(x)|的单调递增区间(不要求写出解题过程).

查看答案和解析>>

同步练习册答案