【题目】如图,在正方形ABCD中,点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.
(1)求证:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
【答案】
(1)证明:由正方形ABCD知,∠DCF=∠DAE=90°,EF∥AC,BD⊥AC,EF⊥BD,
∵点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.
∴PD⊥PF,PD⊥PE,
∵PE∩PF=P,PE、PF平面PEF.
∴PD⊥平面PEF.
又∵EF平面PEF,
∴PD⊥EF,又BD∩PD=D,
∴EF⊥平面PBD,
又EF平面BFDE,∴平面PBD⊥平面BFDE
(2)解:连结BD、EF,交于点O,以O为原点,OF为x轴,OD为y轴,OP为z轴,建立空间直角坐标系,
设在正方形ABCD的边长为2,则DO= , = ,PE=PF=1,PO= = ,
∴P(0,0, ),D(0, ,0),E(﹣ ,0,0),F( ,0,0),
=(﹣ ,﹣ ,0), =(0,﹣ , ), =( ,﹣ ,0),
设平面PDE的法向量 =(x,y,z),
则 ,取y=1,则 =(﹣3, ,3),
平面DEF的法向量 =(0,0,1),
设二面角P﹣DE﹣F的平面角为θ,
则cosθ= = = .
∴二面角P﹣DE﹣F的余弦值为 .
【解析】(1)推导出PD⊥PF,PD⊥PE,则PD⊥平面PEF,由此能证明平面PBD⊥平面BFDE.(2)连结BD、EF,交于点O,以O为原点,OF为x轴,OD为y轴,OP为z轴,建立空间直角坐标系,由此能求出二面角P﹣DE﹣F的余弦值.
科目:高中数学 来源: 题型:
【题目】如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1 , a2 , …,an , 输出A,B,则( )
A.A和B分别是a1 , a2 , …,an中最小的数和最大的数
B.A和B分别是a1 , a2 , …,an中最大的数和最小的数
C. 为a1 , a2 , …,an的算术平均数
D.A+B为a1 , a2 , …,an的和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,
(Ⅰ)求证:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的方程为x2+y2﹣6x=0,过点(1,2)的该圆的三条弦的长a1 , a2 , a3构成等差数列,则数列a1 , a2 , a3的公差的最大值是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由于函数f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的图象部分数据已污损,现可以确认点C( ,0),其中A点是图象在y轴左侧第一个与x轴的交点,B点是图象在y轴右侧第一个最高点,则f(x)在下列区间中是单调的( )
A.(0, )
B.( , )
C.( ,2π)
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;
(2)若函数y=f(x)有两个极值点x1 , x2(x1<x2),求a的取值范围并证明x1+x2>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2ax(a>0).
(1)当a=2时,解关于x的不等式﹣3<f(x)<5;
(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com