精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).

(1)求椭圆C的方程;

(2)若斜率为1的直线与椭圆C交于不同的两点,且点M到直线l的距离为,求直线l的方程.

【答案】(1) 1,(2) xy10

【解析】

1)设椭圆的方程为,由椭圆经过点,利用待定系数法即可得到椭圆的方程;

2)设直线方程为:,联立,得,由点到直线的距离公式即可得到直线的方程.

(1)设椭圆C的方程为mx2ny21(m0n0mn),由题意得 解得

∴椭圆C的方程为1.

(2)由题意可设直线l的方程为yxm,将其代入椭圆方程,

5x28mx4m2200.

则Δ=(8m)24×5(4m220)=-16m24000

∴-5m5.

又点M(4,1)到直线l的距离为

m=-1m=-5(舍去).

∴直线l的方程为xy10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知抛物线y28x的焦点为F,直线l过点F且依次交抛物线及圆2ABCD四点,则|AB|+4|CD|的最小值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的曲线是圆

1)求实数的取值范围;

2)若直线与圆相交于两点,且为坐标原点),求实数的值;

3)当时,设为直线上的动点,过作圆的两条切线,切点分别为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以如表:

反馈点数t

1

2

3

4

5

销量百件

1

经分析发现,可用线性回归模型拟合当地该商品销量千件与返还点数t之间的相关关系请用最小二乘法求y关于t的线性回归方程,并预测若返回6个点时该商品每天销量;

若节日期间营销部对商品进行新一轮调整已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间

百分比

频数

20

60

60

30

20

10

求这200位拟购买该商品的消费者对返点点数的心理预期值X的样本平均数及中位数的估计值同一区间的预期值可用该区间的中点值代替;估计值精确到

将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望膨胀型”消费者的人数为随机变量X,求X的分布列及数学期望.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C和椭圆1有公共的焦点,且离心率为

1)求双曲线C的方程;

2)经过点M21)作直线l交双曲线CAB两点,且MAB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点分别为是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两直线分别交椭圆于两点.

1)求点坐标;

2)当直线经过点时,求直线的方程;

3)求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间的长度为.如果一个函数的所有单调递增区间的长度之和为(其中为自然对数的底数),那么称这个函数为“函数”.下列四个命题:

①函数不是“函数”;

②函数是“函数”,且

③函数是“函数”;

④函数是“函数”,且.

其中正确的命题的个数为( )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题pxR,2mx2+mx-<0,命题q:2m+1>1.若“pq”为假,“pq”为真,则实数m的取值范围是(  )

A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)

C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案