【题目】如图,在四棱锥中,底面是边长为2的正方形,,分别为,的中点,平面平面,且.
(1)求证:平面;
(2)求三棱锥的体积.
【答案】(1)详见解析,(2)
【解析】试题分析: (1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需要利用平几知识,如本题分别取中点,与构成一个平行四边形,再利用平行四边形性质进行求证;也可连接,利用三角形中位线性质求证;(2)求三棱锥体积,关键求锥的高,而求锥的高需利用线面垂直关系进行寻找.证明或寻找线面垂直,可结合条件,利用面面垂直性质定理得到边上中线就是平面的垂线,最后根据等体积法及椎体体积公式求体积.
试题解析:(1)证明:连接,则是的中点,为的中点,
故在中,,
且平面,平面,
∴平面.
(2)取的中点,连接,
∵,
∴,
又平面平面,平面平面,
∴平面,
∴.
科目:高中数学 来源: 题型:
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现从中随机抽取100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.
(Ⅰ)若在该样本中,数学成绩优秀率是30%,求的值;
(Ⅱ)已知,求数学成绩为优秀的人数比及格的人数少的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log (-x+1).
(1)求f(0),f(1);
(2)求函数f(x)的解析式;
(3)若f(a-1)<-1,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;
平均车速超过 人数 | 平均车速不超过 人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(Ⅱ )以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式: ,其中.
参考数据:
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A是同时符合以下性质的函数f(x)组成的集合:
①x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-和f2(x)=1+3· (x≥0)是否属于集合A,并简要说明理由;
(2)把(1)中你认为是集合A中的一个函数记为g(x),若不等式g(x)+g(x+2)≤k对任意的x≥0总成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).
P(K2≥k0) | 0.05 | 0.01 |
k0 | 3.841 | 6.635 |
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com