精英家教网 > 高中数学 > 题目详情

若二次函数的图象和直线无交点,现有下列结论:

①方程一定没有实数根;

②若,则不等式对一切实数x都成立;

③若,则必存在实数,使;

④函数的图象与直线一定没有交点,

其中正确的结论是____________(写出所有正确结论的编号).

 

【答案】

①②④

【解析】

试题分析:因为函数的图象与直线没有交点,所以恒成立.

因为恒成立,所以没有实数根,故①正确;

,则不等式对一切实数x都成立,故②正确;

,则不等式对一切实数x都成立,所以不存在实数,使,故③错误;

由函数,与的图象关于y轴对称,所以和直线也一定没有交点.故④正确,答案为①②④.

考点:二次函数的图象和性质

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省示范高中高三(上)第一次联考数学试卷(理科)(解析版) 题型:填空题

若二次函数的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x,使f[f(x)]>x
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省示范高中高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

若二次函数的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x,使f[f(x)]>x
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省示范高中高三(上)第一次联考数学试卷(理科)(解析版) 题型:填空题

若二次函数的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x,使f[f(x)]>x
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省示范高中高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

若二次函数的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x,使f[f(x)]>x
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号).

查看答案和解析>>

同步练习册答案