精英家教网 > 高中数学 > 题目详情
3.如图,已知是A,B是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,AC=AB=6,BD=6$\sqrt{2}$,求线段CD的长.

分析 A,B是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,可得AC⊥BD.于是$\overrightarrow{CA}•\overrightarrow{AB}$=$\overrightarrow{CA}•\overrightarrow{BD}$=$\overrightarrow{AB}•\overrightarrow{BD}$=0.利用$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,利用数量积运算性质即可得出.

解答 解:∵A,B是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,∴AC⊥平面β,∴AC⊥BD.
∴$\overrightarrow{CA}•\overrightarrow{AB}$=$\overrightarrow{CA}•\overrightarrow{BD}$=$\overrightarrow{AB}•\overrightarrow{BD}$=0.
∵$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
∴${\overrightarrow{CD}}^{2}$=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}$+$2\overrightarrow{CA}•\overrightarrow{AB}$+2$\overrightarrow{CA}•\overrightarrow{BD}$+2$\overrightarrow{AB}•\overrightarrow{BD}$=${6}^{2}+{6}^{2}+(6\sqrt{2})^{2}$=144,
∴$|\overrightarrow{CD}|$=12.

点评 本题考查了空间位置关系、向量数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)将曲线C上各点的纵坐标伸长为原来的两倍,得到曲线C1,写出曲线C1的极坐标方程.
(2)射线θ=$\frac{π}{6}$与C1、l的交点分别为A、B,射线θ=-$\frac{π}{6}$与C1、l的交点分别为A1、B1,求△OAA1与△OBB1的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将函数f(x)=sin2x-$\sqrt{3}x$(x>0)的所有极大值点按从小到大顺序依次排列,形成数列{xn},θn=x1+x2+…+xn,则下列命题正确的是①②④⑤(写出你认为正确的所有命题的序号)
①函数f(x)=sin2x-$\sqrt{3}$x在x=$\frac{π}{12}$处取得极大值;
②tanx${\;}_{n}=2-\sqrt{3}$;
③sinθn≤sinθn+1对于任意正整数n恒成立;
④存在正整数T,使得对于任意正整数n,都有sinθn=sinθn+T=0成立;
⑤n取所有的正整数,sinθn的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y的取值如表所示:
x2345
y2.23.85.56.5
从散点图可以看出,y与x线性相关,若回归方程为$\widehat{y}$=1.46x+a,则实数a=-0.61.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.把正方形ABCD沿对角线AC折成直二面角,点E,F分别为AD,BC的中点,点O为原正方形中心,求折起后∠EOF的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知三棱柱ABC-A1B1C1中,D是AC的中点,求证:AB1∥平面DBC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC各角的对应边分别为a,b,c,且满足$\frac{b}{a+c}$+$\frac{c}{a+b}$≥1,则角A的取值范围是(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=$\sqrt{2}$AD,AD=$\sqrt{2}$A1B1,∠BAD=45°.
(1)证明:BD⊥AA1
(2)证明:AA1∥平面BC1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设0<θ<π,若cosθ+isinθ=$\frac{1+\sqrt{3}i}{-2i}$(i为虚数单位),则θ的值为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案