精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为D,若存在非零实数k使得对于任意x∈D,有f(x+k)≥f(x),则称f(x)为D上的“k调函数”.如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的“k调函数”,那么实数k的取值范围是
 
考点:二次函数的性质
专题:计算题,新定义
分析:根据题意可知在[-1,+∞)上的任意x(设x=x+k)有y≥-1恒成立,推断出k≥-1-x恒成立,进而根据x的范围可推知-1-x最大为0,判断出m的范围,进而根据f(x+k)≥f(x),求得(x+k)2≥x2,化简求得k≥-2x恒成立,进而根据x的范围确定-2x的范围,进而求得k的范围.
解答: 解:在[-1,+∞)上的任意x(设x=x+k)有y≥-1恒成立,则x+k≥-1恒成立,即k≥-1-x恒成立.
对于x∈[-1,+∞),当x=-1时-1-x最大为0,所以有k≥0.
又因为f(x+k)≥f(x),即(x+k)2≥x2在x∈[-1,+∝)上恒成立,化简得k2+2kx≥0,又因为k≥0,所以k+2x≥0即k≥-2x恒成立,当x=-1时-2x最大为2,所以k≥2
综上可知k≥2.
故答案为:k≥2.
点评:本题主要考查了抽象函数极其应用.考查了学生分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

天津高考数学试卷共有8道选择题,在每小题给出的四个选项中,只有一项是符合题目要求的,评分标准规定:“选对得5分,不选或选错得0分”.某考生已确定有4道题答案是正确的,其余题中:有两道只能分别判断2个选项是错误的,有一道仅能判断1个选项是错误的,还有一道因不理解题意只好乱猜,求:
(Ⅰ)该考生得40分的概率;
(Ⅱ)写出该考生所得分数孝的分布列,并求:
①该考生得多少分的可能性最大?
②该考生所得分数ξ的数学期望•

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),设直线AB:2x-y-1=0切抛物线于点A,交y轴于点B,且D为AB中点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若过点D作直线l交抛物线于不同的两点M,N,直线BM,BN分别交抛物线于另一点P,Q,是否存在直线l,使△DPQ的面积为
1
8
,若存在,求出所有符合条件的直线l的方程;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:23x-2x<2(2x-2-x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
3
x2
-
1
x3
,求导数g′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正三角形ABC中,点P满足
CP
=2
PB
,则
AP
CB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项为和Sn,点(n,
Sn
n
)在直线y=
1
2
x+
11
2
上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b1=5,{bn}前10项和为185.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
3
(2an-11)(2bn-1)
,数列的前n和为Tn,求证:Tn
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC=2,BC=6,已知点O是△ABC内一点,且满足
OA
+3
OB
+4
OC
=
0
,则
OC
•(
BA
+2
BC
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(1)=2.
(1)求f(0)、f(3)的值;
(2)判定f(x)的单调性;
(3)若f(4x-a)+f(6+2x+1)>6对任意x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案