精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,求实数a的取值范围;
(3)存在x∈(-∞,0],使|af(x)-f(2x)|>1成立,试求a的取值范围.

分析 (1)依题意,f(log4x)=3?${2}^{{log}_{4}x}$=3,即${2}^{{log}_{2}\sqrt{x}}$=$\sqrt{x}$=3,从而可解得x=9;
(2)利用指数函数y=2x的单调性可得:f(x+1)≤f[(2x+a)2]⇒x+1≤(2x+a)2,依题意,整理可得a≥(-2x+$\sqrt{x+1}$)max,x∈[0,15].利用换元法可解得a的取值范围;
(3)令2x=t,则存在t∈(0,1)使得|t2-at|>1,即存在t∈(0,1)使得t2-at>1或t2-at<-1,分离参数a,即存在t∈(0,1)使得a<(t-$\frac{1}{t}$)max或a>(t+$\frac{1}{t}$)min,解之即可;

解答 解:(1)∵f(x)=2x
∴f(log4x)=3?${2}^{{log}_{4}x}$=${2}^{{log}_{2}\sqrt{x}}$=$\sqrt{x}$=3,解得:x=9,
即方程f(log4x)=3的解为:x=9;
(2)∵f(x)=2x,为R上的增函数,
∴由f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,
得x+1≤(2x+a)2(a>0)对x∈[0,15]恒成立,
因为a>0,且x∈[0,15],所以问题即为$\sqrt{x+1}$≤2x+a恒成立
∴a≥(-2x+$\sqrt{x+1}$)max,x∈[0,15].
设m(x)=-2x+$\sqrt{x+1}$,令$\sqrt{x+1}$=t(1≤t≤4),则x=t2-1,t∈[1,4],
∴m(t)=-2(t2-1)+t=-2(t-$\frac{1}{4}$)2+$\frac{17}{8}$,
所以,当t=1时,m(x)max=1,
∴a≥1.
(3)令2x=t,∵x∈(-∞,0],
∴t∈(0,1),
∴存在x∈(-∞,0],使|af(x)-f(2x)|>1成立?存在t∈(0,1)使得|t2-at|>1,
所以存在t∈(0,1)使得t2-at>1或t2-at<-1,
即存在t∈(0,1)使得a<(t-$\frac{1}{t}$)max或a>(t+$\frac{1}{t}$)min
∴a≤0或a≥2;

点评 本题考查函数恒成立问题,突出考查指数函数的单调性,闭区间上的最值的求法,考查函数方程思想、等价转化思想、考查换元法、构造法、配方法的综合运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设f(x)定义在R上的函数,且对任意m,n有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1,且当x<0时,有f(x)>1
(2)判断f(x)在R上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求证:
(1)tanA-$\frac{1}{tanA}$=-$\frac{2}{tan2A}$;
(2)sinθ(1+cos2θ)=sin2θcosθ;
(3)sin2$\frac{α}{4}$=$\frac{1-cos\frac{α}{2}}{2}$;
(4)1+sinα=2cos2($\frac{π}{4}$-$\frac{α}{2}$);
(5)1-sinα=2cos2($\frac{π}{4}$+$\frac{α}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\frac{cos2α}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin(α+$\frac{π}{4}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y2=2x的焦点到准线的距离为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=-x+ex-m的单调增区间是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合An={(x1,x2,…,xn)|xi∈{-1,1}(i=1,2,…,n)}.x,y∈An,x=(x1,x2,…,xn),y=(y1,y2,…,yn),其中xi,yi∈{-1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+xnyn.若x⊙y=0,则称x与y正交.
(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;
(Ⅱ)令B={x⊙y|x,y∈An}.若m∈B,证明:m+n为偶数;
(Ⅲ)若A⊆An,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax为一个“λ一半随函数;③“$\frac{1}{2}$一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案