分析 (1)依题意,f(log4x)=3?${2}^{{log}_{4}x}$=3,即${2}^{{log}_{2}\sqrt{x}}$=$\sqrt{x}$=3,从而可解得x=9;
(2)利用指数函数y=2x的单调性可得:f(x+1)≤f[(2x+a)2]⇒x+1≤(2x+a)2,依题意,整理可得a≥(-2x+$\sqrt{x+1}$)max,x∈[0,15].利用换元法可解得a的取值范围;
(3)令2x=t,则存在t∈(0,1)使得|t2-at|>1,即存在t∈(0,1)使得t2-at>1或t2-at<-1,分离参数a,即存在t∈(0,1)使得a<(t-$\frac{1}{t}$)max或a>(t+$\frac{1}{t}$)min,解之即可;
解答 解:(1)∵f(x)=2x,
∴f(log4x)=3?${2}^{{log}_{4}x}$=${2}^{{log}_{2}\sqrt{x}}$=$\sqrt{x}$=3,解得:x=9,
即方程f(log4x)=3的解为:x=9;
(2)∵f(x)=2x,为R上的增函数,
∴由f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,
得x+1≤(2x+a)2(a>0)对x∈[0,15]恒成立,
因为a>0,且x∈[0,15],所以问题即为$\sqrt{x+1}$≤2x+a恒成立
∴a≥(-2x+$\sqrt{x+1}$)max,x∈[0,15].
设m(x)=-2x+$\sqrt{x+1}$,令$\sqrt{x+1}$=t(1≤t≤4),则x=t2-1,t∈[1,4],
∴m(t)=-2(t2-1)+t=-2(t-$\frac{1}{4}$)2+$\frac{17}{8}$,
所以,当t=1时,m(x)max=1,
∴a≥1.
(3)令2x=t,∵x∈(-∞,0],
∴t∈(0,1),
∴存在x∈(-∞,0],使|af(x)-f(2x)|>1成立?存在t∈(0,1)使得|t2-at|>1,
所以存在t∈(0,1)使得t2-at>1或t2-at<-1,
即存在t∈(0,1)使得a<(t-$\frac{1}{t}$)max或a>(t+$\frac{1}{t}$)min,
∴a≤0或a≥2;
点评 本题考查函数恒成立问题,突出考查指数函数的单调性,闭区间上的最值的求法,考查函数方程思想、等价转化思想、考查换元法、构造法、配方法的综合运用,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com