精英家教网 > 高中数学 > 题目详情

【题目】土壤重金属污染已经成为快速工业化和经济高速增长地区的一个严重问题,污染土壤中的某些重金属易被农作物吸收,并转入食物链影响大众健康.AB两种重金属作为潜在的致癌物质,应引起特别关注.某中学科技小组对由AB两种重金属组成的1000克混合物进行研究,测得其体积为100立方厘米(不考虑物理及化学变化),已知重金属A的密度大于,小于,重金属B的密度为.试计算此混合物中重金属A的克数的范围.

【答案】大于克,小于.

【解析】

根据题意设未知数,根据条件构建新的方程从而找到的关系,利用函数的单调性来分析混合物中重金属A的克数的范围.

设重金属A的密度为,此混合物中含重金属Ay克.

由题意可知,重金属B克,且.解得

因为,所以当时,yx的增大而减小,因为

所以

解得.故此混合物中重金属A的克数的范围是大于克,小于克.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面ABC,点DEF分别为PCABAC的中点.

(Ⅰ)求证:平面DEF

(Ⅱ)求证:

阅读下面给出的解答过程及思路分析.

解答:(Ⅰ)证明:在中,因为EF分别为ABAC的中点,所以

因为平面DEF平面DEF,所以平面DEF

(Ⅱ)证明:因为平面ABC平面ABC,所以

因为DF分别为PCAC的中点,所以.所以

思路第(Ⅰ)问是先证,再证线面平行

第(Ⅱ)问是先证,再证,最后证线线垂直

以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.

空格

选项

A

B

C

A

B

C

A.线线垂直

B.线面垂直

C.线线平行

A.线线垂直

B.线面垂直

C.线线平行

A.线面平行

B.线线平行

C.线面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx是定义在(﹣11)上的奇函数,且f

)求实数mn的值,并用定义证明fx)在(﹣11)上是增函数;

)设函数gx)是定义在(﹣11)上的偶函数,当x[01)时,gx)=fx),求函数gx)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)写出直线的普通方程及曲线的直角坐标方程;

(2)已知点,点,直线过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足

1)将利润表示为产量万台的函数;

2)当产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 的内角 的对边分别为 已知

(1)求角

(2)若 ,求 的面积.

查看答案和解析>>

同步练习册答案