精英家教网 > 高中数学 > 题目详情

【题目】设定义在[﹣2,2]上的奇函数f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m﹣1)>0,求实数m的取值范围.

【答案】
(1)解:定义在[﹣2,2]上的奇函数f(x)=x5+x3+b,由于满足f(0)=0,

可得b=0


(2)解:若f(x)在[0,2]上单调递增,且 f(m)+f(m﹣1)>0,

可得f(m)>﹣f(m﹣1)=f(1﹣m),故有

解得 <m≤2,故实数m的范围为( ,2]


【解析】(1)根据奇函数的性质可得f(0)=0,从而求得b的值.(2)由条件可得f(m)>﹣f(m﹣1)=f(1﹣m),再由 ,求得m的范围.
【考点精析】通过灵活运用函数单调性的性质和函数奇偶性的性质,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

)讨论函数的单调性;

)若函数上有最小值,且最小值为,满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的定义域为集合A,y=﹣x2+2x+2a的值域为B.
(1)若a=2,求A∩B
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形, 底面 分别是的中点.

(1)在图中画出过点的平面,使得平面(须说明画法,并给予证明);

(2)若过点的平面平面且截四棱锥所得截面的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+x2+mx在x=1处有极小值,

g(x)=f(x)﹣x3x2+x﹣alnx.

(1)求函数f(x)的单调区间;

(2)是否存在实数a,对任意的x1、x2∈(0,+∞),且x1≠x2,有恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆过点A(2,1),离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆相交于BC两点(异于点A),线段BCy轴平分,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且BRA),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出直线的极坐标方程与曲线的直角坐标方程;

(2)已知与直线平行的直线过点,且与曲线交于两点,试求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点

(1)当时,若是椭圆第一象限内的一点,,求点的坐标;

(2)当椭圆焦点在轴上且焦距2时,若直线与椭圆相交于两点,且证:的面积为定值.

查看答案和解析>>

同步练习册答案