精英家教网 > 高中数学 > 题目详情
16.已知A,B,C三点不共线,A,B,D三点共线,$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,则△CDB面积和△CDA的面积之比为1:1.

分析 根据A,B,D三点共线,得出t+(2+t)=1,求出t的值,化简$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$,D是AB的中点,即可求出面积比是多少.

解答 解:∵A,B,D三点共线,且$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,
∴t+(2+t)=1,
解得t=-$\frac{1}{2}$;
∴$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{CA}$+$\frac{3}{2}$$\overrightarrow{CB}$,
∴$\overrightarrow{CD}$-$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{CB}$-$\overrightarrow{CA}$),
即$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$;如图所示,
∴BD=$\frac{1}{2}$AB,即BD=AD;
∴△CDB的面积和△CDA的面积之比为1:1.
故答案为:1:1.

点评 本题考查了平面向量的应用问题,解题的关键是利用三点共线求出t的值,化简$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出D是AB的中点,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=4x的焦点为F,过点(a,0)(a<0)倾斜角为$\frac{π}{6}$的直线l交抛物线C、D两点.若F在以线段CD为直径的圆的外部,则a的取值范围为(  )
A.(-3,-2$\sqrt{5}$+3)B.(-∞,-2$\sqrt{5}$+3)C.(-$\frac{1}{2}$,4-$\sqrt{17}$)D.(-∞,4-$\sqrt{17}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求y=2x+1+2$\sqrt{-{x}^{2}+2x+3}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.?x∈(0,+∞),不等式x2-ax+1>0都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=-$\frac{3\sqrt{10}}{10}$,且α是第三象限角,求tan(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=$\sqrt{-2co{s}^{2}x+3cosx-1}$+lg(36-x2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中,化简:$\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{{B}_{1}C}-\overrightarrow{{B}_{1}B}+\overrightarrow{{A}_{1}{B}_{1}}$-$\overrightarrow{{A}_{1}B}$=$\overrightarrow{B{D}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设向量$\overrightarrow{a}$=(1+cosα,sinα),$\overrightarrow{b}$=(1-cosβ,sinβ),$\overrightarrow{c}$=(1,0),其中α∈(0,π),β(π,2π).
(1)求证:|$\overrightarrow{a}$|=2cos$\frac{α}{2}$,|$\overrightarrow{b}$|=2sin$\frac{β}{2}$;
(2)若$\overrightarrow{a}$与$\overrightarrow{c}$的夹角是θ1,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角是θ2,且θ12=$\frac{π}{6}$,求sin$\frac{α-β}{4}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(I)证明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求点B到平面PCD的距离.

查看答案和解析>>

同步练习册答案