精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,且对任意正整数,满足.

(1)求数列的通项公式;

(2)若,数列的前项和为,是否存在正整数,使? 若存在,求出符合条件的所有的值构成的集合;若不存在,请说明理由.

【答案】(1) (2) .

【解析】试题分析:(1由和项与通项关系可得项之间递推关系,再根据等比数列定义可得数列的通项公式;2由错位相减法可得,再化简不等式得,根据指数函数与一次函数图像可得的值

试题解析:(1)

时,

所以

所以是以首项,公比的等比数列,

所以数列的通项公式为.

(2)由(1)知,

记数列的前项和为,则

,①

,②

②-①得

所以,数列的前项和为.

要使,即

所以.

时, ,当时, ,当时, ,结合函数的图象可知,当时都有

所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使平面平面

)若是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由.

)求三棱锥的体积的最大值,并求此时点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为3圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.

1写出体积关于的函数关系式,并指出定义域;

2为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?(圆柱体积公式: 为圆柱的底面积, 为圆柱的高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+ )的图象向右平移 后的表达式为(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, .

(1)在平面内找一点,使得直线平面,并说明理由;

(2)证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP上的一动点.

(1)求使取最小值时的

(2)(1)中求出的点Z,求cosAZB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直三棱柱中, 中点.

)求证: 平面

)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 若两条直线和同一个平面所成的角相等,则这两条直线平行

B. 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C. 若两个平面都垂直于第三个平面,则这两个平面平行

D. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

查看答案和解析>>

同步练习册答案