精英家教网 > 高中数学 > 题目详情
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(1)函数的单调递增区间为;(2)的取值范围是

试题分析:(1)确定出函数的定义域是解决本题的关键,利用导数作为工具,求出该函数的单调递增区间即为的取值区间;(2)方法一:利用函数思想进行方程根的判定问题是解决本题的关键.构造函数,研究构造函数的性质尤其是单调性,列出该方程有两个相异的实根的不等式组,求出实数的取值范围.方法二:先分离变量再构造函数,利用函数的导数为工具研究构造函数的单调性,根据题意列出关于实数的不等式组进行求解.本题将方程的根的问题转化为函数的图象交点问题,是解决问题的关键.
试题解析:(1)函数的定义域为,          1分
,            2分
,则使的取值范围为
故函数的单调递增区间为.              4分
(2)方法1:∵
.        6分

,且

在区间内单调递减,在区间内单调递增,            9分
在区间内恰有两个相异实根 12分
解得:
综上所述,的取值范围是.         14分
方法2:∵
.        6分


,且

在区间内单调递增,在区间内单调递减.     9分


在区间内恰有两个相异实根.        12分

综上所述,的取值范围是.         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数)
(1)求函数的单调区间;
(2)设函数,存在实数,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数为实常数。
(1)若时,求函数的极大、极小值;
(2)设函数,其中的导函数,若的导函数为轴有且仅有一个公共点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在R上可导,且,则(     )
A.B.C.D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数y=f(x),x∈R的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:ef(2),f(3),e2f(-1)从小到大依次排列为__________________.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx(a,b∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)若f(1)=,且函数f(x)在上不存在极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的导函数在区间上有零点,则在下列区间单调递增的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个球的体积、表面积分别为VS,若函数Vf(S),f′(S)是f(S)的导函数,则f′(π)=(  )
A.B.C.1D.π

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-aln xx(a≠0),
(1)若曲线yf(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案